生物化学(第三版)上版课后习题详细解答

催化。

6. 多元催化和协同效应:酶催化反应中常常几个基元催化反应配合在一起共同起作用,加速酶反应。

7. 活性部位微环境的影响:在酶分子的表面有一个裂缝,而活性部位就位于疏水环境的裂缝中,大大有利于酶的催化作用。

4.推测下列寡聚糖被溶菌酶水解的相对速率:(G:N-乙酰氨基葡萄;M:N-乙酰氨基葡萄乳酸) (1)M-M-M-M-M-M;(2)G-M-G-M-G-M;(3)M-G-M-G-M-G

1818

5.假设在合成(NAG)时D和E糖残基之间的糖苷氧已为O所标记,当溶菌酶水解时,O将出现在哪个产物中?

18

答:O将出现在由A、B、C、D残基组成的四聚体中。

6.请比较溶菌酶、羧肽酶A、胃蛋白酶和胰凝乳蛋白酶:(1)哪一种酶的催化活性需要金属离子?(2)哪种酶只含一条多肽链?(3)哪种酶被DFP迅速地失活?(4)哪种酶是由酶原激活成的?

答:(1)羧肽酶A;(2)溶菌酶;(3)胰凝乳蛋白酶;(4)羧肽酶A、胃蛋白酶、胰凝乳蛋白酶。

7.上题4种酶的催化机制中是否有从酶到底物的质子转移过程?若有请指出它们的质子供体是什么?

++

答:溶菌酶中的Glu35的-COOH提供一个H;羧肽酶A中的Glu270的-COOH提供一个H;胃蛋白酶

++

中的Asp32的-COOH提供一个H;胰凝乳蛋白酶中Ser195提供一个H。

8.TPCK是胰凝乳蛋白酶的亲和标记试剂,它对His57烷基化后使胰凝乳蛋白酶失活。(1)为胰蛋白酶设计一个像TPCK那样的亲和标记试剂。(2)你认为怎样可以检验它的专一性?(3)能被胰蛋白酶的这个亲和标记试剂失去活性的还有哪个丝氨酸蛋白酶?

9.胰凝乳蛋白酶、胰蛋白酶和弹性蛋白酶作为催化剂有哪些相似之处?有哪些不同之处?在酶的分子结构上是哪些因素引起这些差异?

答:相似之处:①执行相同的反应——裂解肽键;②其结构和作用机制很相似;③相对分子质

3

量范围在2.5×10,并且具有相似的顺序和三级结构;④3个极性残基——His57、Asp102和Ser195在活性部位形成催化三联体。

不同之处:①专一性不同:胰蛋白酶裂解碱性氨基酸Arg和Lys羧基侧链肽;胰凝乳蛋白酶选择裂解芳香氨基酸如Phe和Tyr羰基侧链;弹性蛋白主要裂解小的中性氨基酸残基羰基侧链肽;②酶活性部位不同:胰蛋白酶口袋中,有一个负电荷Asp189在底部,有利于结合正电荷Arg和Lys残基;胰凝乳蛋白酶口袋被疏水氨基酸环绕,大的足以容纳一个芳香残基;弹性蛋白口袋浅,开口处具有大的Thr和Val残基,仅小的,部大的残基能够容纳在它的口袋中。

10.ATCase是一种别构酶,其活性部位与别构效应物结合部位分别处于不同亚基之上,有可能设想别构酶上这两种部位存在于同一亚基上吗?为什么?

11.对于ATCase来说,琥珀酸起着Asp(两个底物中的一个)的竞争抑制作用。υ对[Asp]的依赖关系见图10-71A(假设这些实验中第二种底物是过量的并可忽略)。在图10-71B种[Asp]维持在低水平(图10-71A种箭头所指处)不变,并加入一系列含量递增的琥珀酸。琥珀酸不能作为底物参与反应。请解释这些结果。

答:(图略)琥珀酸的结合导致协同由T型向R型转变。

25

12.试解释为什么胰凝乳蛋白不能像胰蛋白酶那样自我激活?

13.羧肽酶A促使底物的水解,下面哪个是其重要的机制:(1)结构重排将必需氨基酸残基靠近敏感键。(2)形成一个C端环肽的共价中间物。(3)活性部位Try残基脱质子形成亲核作用。(4)通过

2+

结合Zn的活化水。

14.左边裂处的每一种酶,按照提出的催化机制,从右边选择出它们适当的过渡态或化学本质。

2+

(1)溶菌酶——(4) (1)Zn的活化水 (2)RNA酶——(3) (2)氧阴离子 (3)羧肽酶A——(1) (3)五价磷 (4)胰凝乳蛋白酶(2)(5) (4)碳正离子 (5)胃蛋白酶——(6) (5)四面体肽键

(6)天冬氨酸——活化水

15.对蛋白酶A的叙述中哪一个是正确的? (1) 通过ATP活化。——(×)

(2) 在没有激活剂时有2个催化亚基(C)和两个调节亚基(R)组成。——(×) (3) 激活剂结合后解离成一个C2和2个R亚基。——(×) (4) 在C亚基中含有一个假底物顺序。——(√)

-5-7

16.苯甲脒(Ki=1.8×10mol/L)和亮抑蛋白酶肽(Leupeptin Ki=3.8×10mol/L)是胰蛋白酶的两种特异竞争性抑制剂,试解释它们的抑制机制。设计亮抑蛋白酶肽的类似物抑制胰凝乳蛋白酶和弹性蛋白酶。

第十一章 维生素与辅酶

提要

维生素是维持生物体正常生长发育和代谢所必需的异类微量有机物质,不能由机体合成,或合成量不足,必须靠食物供给。由于维生素缺乏而引起的疾病称为维生素缺乏症。维生素都是小分子有机化合物,在结构上无共同性。通常根据其溶解性质分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素由维生素A、D、E、K等,水溶性维生素有维生素B1、B2、B6、B12、烟酸、烟酰胺、泛酸、生物素、叶酸、硫辛酸和维生素C等。现已知绝大多数维生素作为酶的辅酶或辅基的组成成分,在物质代谢中起重要作用。

维生素A的活性形式是11-顺视磺醛,参与视紫红质的合成,与暗视觉有关。此外维生素A还参与糖蛋白的合成,在刺激组织生长分化中也起重要作用。维生素D为类淄醇衍生物,1,25-二羟维生素D3是其活性形式,用以调节钙磷代谢,促进新骨的生成与钙化。维生素E是体内最重要的抗氧化剂,可保护生物膜的结构和功能,维生素E还可促进血红素的合成。维生素K与肝脏合成凝血因子Ⅱ、Ⅶ、Ⅸ和Ⅹ有关,作为谷氨酰羧化酶的辅助因子参与凝血因子前体转变活性凝血因子所必须的。除维生素C外,水溶性维生素主要为B族维生素,以辅酶和辅基的形式存在,参与物质代谢。硫胺素的辅酶形式为硫胺素焦磷酸(TPP),是α-酮酸脱羧酶、转酮酶及磷酸酮酶的辅酶,在α-裂解反应、α-缩合反应及α-酮转移反应中起重要作用。核黄素和烟酰胺是氧化还原酶类的重要辅酶,

++

核黄素以FMN和FAD是形式作为黄素蛋白酶的辅基;而烟酰胺以NAD和NADP形式作为许多脱氢酶的辅酶,至少催化6种不同类型的反应。泛酸是构成CoA和ACP的成分,CoA起传递酰基的作用,是各种酰化反应的辅酶,而ACP与脂肪酸的合成关系密切。磷酸吡哆醛是氨基酸代谢种多种酶的辅酶,参加催化涉及氨基酸的转氨作用,α-和β-脱羧作用,β-和γ-消除作用,消旋作用和醛醇裂解反应。生物素是几种羧化酶的辅酶,包括乙酰CoA羧化酶和丙酮酸羧化酶,参与CO2的固定作用。维生素B12存在5ˊ-脱氧腺苷钴胺素和甲基钴胺素两种活性形式。它们参与分子内重排、核苷酸还原成脱

26

氧核苷酸及甲基转移反应。叶酸的辅酶是四氢叶酸(THF),进行一碳单位的传递,参与甲硫氨酸核核苷酸的合成。硫辛酸是一种酰基载体,作为丙酮酸脱氢酶核α-酮戊二酸脱氢酶的辅酶参与糖代谢。抗坏血栓是一种水溶性抗氧化剂,参与体内羟化反应、氧化还原反应,有解毒和提高免疫力的作用。

某些金属离子作为微量元素构成一些酶的必需成分参与酶的催化反应,有的金属离子作为酶的辅基构成金属酶类,有的作为酶的激活剂成为金属激活酶类。发现最多的是铁金属酶类、铜金属酶类和锌金属酶类。

习题

1.例举水溶性维生素与辅酶的关系及其主要生物学功能。

答:水溶性维生素包括维生素B族、硫辛酸和维生素C。维生素B族的主要维生素有维生素B1、B2、PP、B6、泛酸、生物素、叶酸及B12等。

维生素B族在生物体内通过构成辅酶而发挥对物质代谢的影响。这类辅酶在肝脏内含量最丰富,体内不能多储存,多余的自尿中排出。

维生素B1在生物体内常以硫胺素焦磷酸(TPP)的辅酶形式存在,与糖代谢密切,可抑制胆碱脂酶活性。

维生素PP包括烟酸和烟酰胺,在体内烟酰胺与核糖、磷酸、腺嘌呤组成脱氢酶的辅酶,烟酰胺的辅酶是电子载体,在各种酶促氧化-还原过程中起着重要作用。

维生素B2有氧化型和还原型两种形式,在生物体内氧化还原过程中起传递氢的作用,以黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)形式存在,是生物体内一些氧化还原酶(黄素蛋白)的辅基。

泛酸是辅酶A和磷酸泛酰巯基乙胺的组成成分,辅酶A主要起传递酰基的作用。 维生素B6包括3中物质:吡哆醇、吡哆醛、吡哆胺;在体内以磷酸脂形式存在。

维生素B12在体内转变成2种辅酶形式,参与3种类型的反应:①分子内重排;②核苷酸还原成脱氧核苷酸;③甲基转移。

生物素在种种酶促羧化反应中作为活动羧基载体。 叶酸除了CO2外,是所有氧化水平碳原子一碳单位的重要受体和供体。四氢叶酸是叶酸的活性辅酶形式。

硫辛酸常不游离存在,而同酶分子中赖氨酸残基的ε-NH2以酰胺键共价结合,是一种酰基载体。 维生素C具有机酸性质,有防治坏血病功能。

2.对下列每一个酶促反应,写出参与反应的辅酶。 解:略

3.为谷氨酸变位酶反应选择一种适宜的辅酶并写出一个正确的机制:[化学方程式略]

2+

解:该反应适宜的辅酶可为5ˊ-脱氧腺苷钴胺素,重排机制:Co-碳键裂解,钴还原成Co状态,产生一个-CH2基,从底物吸取氢原子形成5ˊ-脱氧腺苷,并脱离底物上的基团(未成电子对),该中间物重排,-CH2-从一个碳原子移动到另一个碳原子,随后氢原子从5ˊ-脱氧腺苷是甲基转移,5ˊ-脱氧腺苷钴胺素重生。

T4、T5、T6与T3同类,略。

7.蛋清可防止蛋黄的腐败,将鸡蛋贮存在冰箱4-6周不腐败。而分离的蛋黄(没有蛋清)甚至在冷冻下也迅速腐败。

(1) 腐败是什么引起的?

(2) 你如何解释观察到的蛋清存在下防止蛋黄腐败?

答:与生物素有关。

27

8.肾营养不良(renal osleodystrophy)也叫肾软骨病,是和骨的广泛脱矿物质作用相联系的一种疾病,常发生在肾损伤的病人中。什么维生素涉及到肾的矿质化?为什么肾损伤引起脱矿物质作用?

答:1,25-二羟维生素D3能诱导钙结合蛋白(CaBP)的合成和促进Ca-ATP酶的活性,这都有

2+

利于Ca的吸收。它也能促进磷的吸收;促进钙盐的更新及新骨的生成;促进肾小管细胞对钙磷的重吸收,减少从尿中排出。1,25-二羟维生素D3的主要耙细胞是小肠粘膜、骨骼和肾小管,肾损伤将影响1,25-二羟维生素D3的作用,故会引起脱矿物质作用。

9.一个临床病人由于代谢紊乱引起酸中毒,即低血和低尿pH。病人体液中化学分析显示分泌大量的甲基丙二酸。将这种化合物饲喂动物时,可以转变成琥珀酸。对于这一观察你能提供营养上的解释吗?

10.四氢叶酸(THF)都以何种形式传递一碳单位?

55105

答:四氢叶酸(THF)传递一碳单位的形式有:N-甲基-THF、N,N-亚甲基-THF、N-甲酰基-THF、10555

N-甲酰基-THF、N-亚胺甲基-THF、N,N-次甲基-THF。

第十二章 核酸通论

提要

1868年Miescher发现DNA。Altmann继续Miescher的研究,于1889年建立从动物组织和酵母细胞制备不含蛋白质的核酸的方法。RNA的研究开始于19世纪末,Hammars于1894年证明酵母核酸中的糖是戊糖。核酸中的碱基大部分是由Kossel等所鉴定。Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”是错误的,在相当长的时间内阻碍了核酸的研究。

理论研究的重大发展往往首先从技术上的突破开始。20世纪40年代新的核酸研究技术证明DNA和RNA都是细胞重要组成成分,并且是特异的大分子。其时,Chargaff等揭示了DNA的碱基配对规律。最初是Astbury,随后Franklin和Wilkins用X射线衍射法研究DNA分子结构,得到清晰衍射图。Watson和Crick在此基础上于1953年提出DNA双螺旋结构模型,说明了基因结构、信息和功能三者之间的关系,奠定了分子生物学基础。DNA双螺旋结构模型得到广泛的实验支持。Crick于1958年提出了“中心法则”。DNA研究的成功带动了RNA研究出现一个新的高潮。20世纪60年代Holley测定了酵母丙氨酸tRNA的核苷酸序列;Nirenberg等被破译了遗传密码;阐明了3类DNA参与蛋白质生物合成的过程。

在DNA重组技术带动下生物技术获得迅猛发展。将DNA充足技术用于改造生物机体的性状特征、改造基因、改造物种,统称之为基因工程或遗传工程。与此同时出现了各种生物工程。技术革命改变了分子生物学的面貌,并推动了生物技术产业的兴起。在此背景下,RNA研究出现了第二个高潮,发现了一系列新的功能RNA,冲击了传统的观点。

人类基因组计划是生物学有史以来最伟大的科学工程。这一计划准备用15年时间(1990-2005

9

年),投资30亿美元,完成人类单倍体基因组DNA3×10bp全部序列的测定。它首先在美国启动,并得到国际科学界的高度重视,英国、日本、法国、德国和中国科学家先后加入了这项国际合作计

28

联系客服:779662525#qq.com(#替换为@)