服务设施的示意图。首先,通过说一说:以中心花坛为观测点,你了解到哪些信息?让学生用已有的八个方向的知识描述平面图中服务设施的方向。由于在东南、东北方向都有两个服务设施,既:“出站口”和“托运处”都在中心花坛的东北方向,“汽车站”和“招待所”都在中心花坛的东南方向,这样就引出了怎样描述才能更准确的问题。接着教材抽象出以花坛为观测点,标出出站口、托运处在东北方向是有角度的教学图,让学生学习用角度准确描述物体所在的方向。如:出站口在花坛的北偏东30o,托运处在花坛的东偏北40o。同时介绍,通常都以北和南为标准,即:托运处在花坛的北偏东50o。这样设计的目的,有利于学生在已有的知识和经验背景下,理解知识的发展过程,体会数学学习的需要,另外,把学生的生活经验和数学规定联系起来,使学生了解多样化的描述方式以及数学上的要求。最后,呈现了其他设施与北、南关系的示意图,让学生描述其他设施所在的准确方向。练一练中,设计了测量角度并用角度描述物体方向的练习。教师要给学生充分的观察图,表述自己意见的机会,使学生体会用角度描述物体所在方向的作用,激发学习平面图知识的欲望,增强学习的自主性。
第2课时,认识简单路线图。本节课在第一学段认识了简单公交线路图的基础上,选择了北京市地铁1号线和2号线示意图,设计了两个层次的学习活动。第一,让学生整体观察路线图,了解有关信息,如:认识图例,了解1号线和2号线上都有哪些车站、1号线的起始站和终点站、1号线和2号线可以在哪个车站换车等等。第二,摸似出行。考虑到人们到北京都会去天安门广场的现实需要,教材提出了坐火车来到北京,从北京站坐地铁去天安门广场,怎样乘车?让学生认识乘车路线。然后,让学生说出自己到北京想去什么地方,说一说如何乘车。这样的内容,不管对城市、还是农村学生来说,都是十分重要的生活经验。在兔博士网站中,介绍了红军“二万五千里”长征的线路图。本节课设计目的,一方面是让学生经历认识简单路线图的过程,了解路线图中的知识。另一方面,提高学生适应现实生活的能力,学会怎样出行和适应生活。教学时,要在学生看懂线路图的基础上,鼓励学生说出自己最想去的地方以及乘车路线。另外,利用“兔博士网站”的内容,使学生受到革命传统教育。
第三单元 方程
“方程”是《数学课程标准》数与代数中“式与方程”部分的内容,无论是原《大纲》还是《数学课程标准》,方程的内容都占有重要的地位,原《大纲》提出的内容是:用字母表示数。简易方程(ax±b=c,ax±bx=c)。列方程解应用题。教学要求是会用字母表示数、常见的数量关系、运算定律和公式;初步理解方程的意义,会解简易方程;初步学会列方程解应用题。《数学课程标准》的具体标准内容是:(1)在具体情境中会用字母表示数。(2)会用方程表示简单情境中的等量关系。(3)理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3)。虽然都是三条,但两者在具体的要求和内含上有所不同。首先,《数学课程标准》强调了要在“具体的情境中”用字母表示数,主要是考虑到用字母表示数是数学符号化的重要内容,从具体情境中抽象,概括出含有字母的“代数式”是数学建模的重要过程。借助学生熟悉的具体事物,认识用字母表示数,不但使学生了解数学“符号”的作用,更重要的是,渗透初步的数学建模的思想。其次,《数学课程标准》不再单纯要求学生列方程解应用题,而是强调“会用方程表示简单情境中的等量关系”,突出了方程的数学模型思想。让学生在用方程表示具体等量关系中理解方程的实际意义。方程是刻画现实世界数量关系(相等)的数学模型,在传统的教学中,注重的是有关的概念和技能,如方程的等价性、方程解的讨论、方程的解法等。历来被看作数学教学的重点和难点,教学中重视给学生分析数量关系,机械的列出方程,解答问题,更有甚者,把问题进行分类,并就某一类问题提供主要的等量关系和解题套路。如,行程问题,浓度问题,工程问题等,这样的教学缺乏探索性、研究性和挑战性,学生体会不到方程是现实世界的数学模型,更没有经历到数学建模的过程,应用意识和实践能力的培养也就成了空话。《数学课程标准》把“会用方程表示简单情境中的等量关系”单列出来,就是要强调方程在数学教育中的作用,让学生感受方程和实际问题的联系,体会到方程是刻画现实世界的模型,领会数学建模的思想和基本过程,提高解决问题的能力和自信心。第三,《数学课程标准》强调了利用等式的性质解简单的方程。而不是原《大纲》教材中的利用加、减、乘、除各部分间的关系作为解方程的依据,突出了方程的“代数”思想以及和初中知识的衔接。鉴于上面的变化,新教材与传统教材在知识建构思想和内容编排上也有着不同的特点。
第一、教材安排和设计思路不同。传统教材中,方程的内容一般分三个小节
(1. 用字母表示数;2. 简易方程;3. 列方程解应用题)集中安排在五年级上册。在学习用字母表示数以后,先学解方程的方法, 再学列方程解应用题。新教材与传统教材相比,首先把式与方程的内容分两个单元分别安排在四年级下册和和五年级下册(本单元)。另外,打破先学解方程的方法,再学列方程解决应用问题的教材体系,在学生认识、了解等式的基本性质以后,把学习方程的解法和解决应用问题整合在一起。选择学生熟悉的、感兴趣的事物和问题。如,手写字和电脑打字问题、猜数奥秘、向山区小朋友捐书等。让学生在具体问题情境中,找到具体问题中的等量关系,进而列出方程,学会求解方法。教材设计的基本思路是:呈现问题情境——数学模型(找等量关系、列方程)——尝试解答——互动学习。
第二、解方程的依据不同。传统教材中,把小学阶段加、减、乘、除各部分间的关系作为解方程的依据,初中则用等式的基本性质解方程。这种小学、初中解方程思路和方法的不一致,使小学阶段的学习非但起不到打基础的作用,在一定程度上还增加了初中学习解方程的难度。新教材按照《数学课程标准》的要求,小学、初中解方程的依据和思路一样—用等式的基本性质解简单方程。考虑到学生还没有学习有理数的运算,本套教材删去了a-x=b 、a÷x=b的方程基本类型。
第三、列方程解应用问题的内容不同。传统教材中,列方程解决的应用问题都是学生以前用算术方法能够解答的问题。首先,因为两种解题方法的思路不同,加上学生长时间学习用算术方法解答,习惯于算术方法的解题思路,所以学习用方程解决应用问题时,往往受到算术方法解题思路的干扰,影响学习效果。另外,传统教材一般采取先鼓励学生用算术方法解答,再讲用方程解答。而且,把用两种方法解答作为解决问题方法多样性的要求。这样一来,用方程解决问题的学习,不但不利于提高学生解决问题的能力,反而增加了学习的难度,容易造成学生思维方面的混乱。新教材根据《数学课程标准》的要求,首先降低“应用题”的难度,不安排用算术方法解逆思考的应用问题,不单设应用题单元,把解决应用问题和学习计算方法整合在一起,让学生在解决问题的过程中学习计算。这些应用问题都是学生熟悉的、用基本数量关系和四则运算的意义能够解答的简单问题。用方程解应用问题时,则选择一些简单逆思考的或适合用方程解答的问题,强调用x表示具体的量,通过对具体情境中数量关系的分析,找到等量关系,然后,
利用等式的 解决问题。这样的教材设计,一方面,减轻了学生学习用算术方法解决稍复杂问题的负担,避免了算术方法对用方程解决问题的干扰;另一方面,有利于培养学生数学思维,形成数学思维方法,有利于中、小学知识的衔接。
本单元共安排7课时。主要内容有:认识等式和方程,等式的基本性质,解简单方程以及列方程解决简单实际问题等。结合单元内容,在探索乐园中安排了 “鸡兔同笼”问题解题思路和方法的探索活动。
本单元的教育目标是:
1、通过具体情境,了解等式和方程的意义,会用方程表示简单情境中的等量关系。
2、理解等式的性质,会用等式的性质解简单的方程(如3x+2=5,2x-x=3),会列方程解决一些简单的应用问题。
3、在解方程的过程中,能进行有条理的思考,能对每一步计算和结论的合理性作出有说服力的说明。
4、具有回顾与分析解决问题过程的意识,能表达解决问题的过程,能检验方程的解是否正确。
5、感受用方程解决问题的价值,认识到许多实际问题可以借助解方程的方法来解决,获得自主解决问题的成功体验,增强学习数学的自信心。
第1课时,认识等式和方程。教材选择了天平这个直观教具,呈现了六幅不同的用天平表示物体质量关系的情境图(其中有两幅图天平两边物体的质量不同),提出了“观察天平图、用式子表示天平两边物体质量关系”的要求。在学生观察、按要求写式子,以及对写出的式子进行分析归纳的基础上,认识等式和方程。“试一试”给出了具体的式子,让学生判断哪些是方程,哪些不是方程。“练一练”安排了三个练习题,第1题,用三幅括线图呈现了已知数量和用x表示的未知数量的关系,让学生尝试列出方程。第2题,说明用x表示的未知量和已知量关系的文字叙述题,让学生列出方程。第3题,是把文字叙述的方程“翻译”成方程式的练习。教学时,有条件的可以用天平操作,或用课件演示,让学生认真观察、写出式子,再通过比较和讨论等,认识等式和方程。做“练一练”的题目时,要帮助学生理解x表示的具体意义。如,一本