н®´óѧÐÅÏ¢¿ÆÑ§Ó빤³ÌѧԺ
elseif D(u,v) <=D0
TRAPEH(u,v)= D(u,v) ¨CD1)/(D0-D1); else
TRAPEH(u,v)=1; end end end
BUTTERG=BUTTERH.*F;
BUTTERfiltered=ifft2(BUTTERG); EXPOTG=EXPOTH.*F;
EXPOTfiltered=ifft2(EXPOTG); TRAPFG=THPFH.*F;
TRAPEfiltered=ifft2(THPFG); subplot(2,2,1),imshow(noisy);
subplot(2,2,2),imshow(BUTTERfilteered) subplot(2,2,3),imshow(EXPOTfiltered) subplot(2,2,4),imshow(TRAPEfiltered)
¡¾Ë¼¿¼Ìâ¡¿
1¡¢¸ÃʵÑé¿ÉÓ¦Óõ½ÄÄЩʵ¼ÊÎÊÌâÖУ¿
´ð£ºÍ¼Ïñƽ»¬µÄÖ÷ҪĿµÄÊǼõÉÙͼÏñÔëÉù£¬¼õÉÙÔëÉùµÄ·½·¨¿ÉÒÔÔÚ¿Õ¼äÓò»òƵÂÊÓò½øÐУ¬¿Õ¼äÓòÖ÷ÒªÓÃÖÐÖµÂ˲¨»ò¾ùÖµÂ˲¨£¬¶øÆµÓòÔòÖ÷ÒªÓõÍͨÂ˲¨¼¼Êõ¡£
¶øÍ¼ÏñÈñ»¯µÄÄ¿µÄÔòÊÇʹ±ßÔµºÍÂÖÀªÏßÄ£ºýµÄͼÏñ±äµÃÇåÎú£¬Í¼ÏñÈñ»¯¿ÉÒÔÔÚ¿Õ¼äÓòÖÐÀûÓöÔͼÏñ΢·Ö½øÐУ¬Ò²¿ÉÒÔÔÚÆµÓòÖÐÔËÓøßͨÂ˲¨¼¼Êõ´¦Àí¡£
Ó¦ÓãºÓ¡Ë¢ÖеÄϸ΢²ã´ÎÇ¿µ÷¡£ÃÖ²¹É¨Ãè¡¢¹ÒÍø¶ÔͼÏñµÄ¶Û»¯ ³¬Éù̽²â³ÉÏ󣬷ֱæÂʵͣ¬±ßԵģºý£¬Í¨¹ýÈñ»¯À´¸ÄÉÆ ͼÏñʶ±ðÖУ¬·Ö¸îǰµÄ±ßÔµÌáÈ¡
Èñ»¯´¦Àí»Ö¸´¹ý¶È¶Û»¯¡¢±©¹â²»×ãµÄͼÏñ ͼÏñ´´ÒÕ£¨Ö»Ê£Ï±߽çµÄÌØÊâͼÏñ£© ¼â¶ËÎäÆ÷µÄÄ¿±êʶ±ð¡¢¶¨Î»
2¡¢ÀûÓÃÖÐÖµÂ˲¨Óë¾ùÖµÂ˲¨·Ö±ð¶ÔͼÏñ´¦Àí£¬Á½ÕßÔÀíÓë´¦ÀíЧ¹ûÓкβ»Í¬£¿
´ð:¾ùÖµÂ˲¨£ºÕâÖÖ·½·¨µÄ»ù±¾Ë¼ÏëÊÇÓü¸¸öÏñËØ»Ò¶ÈµÄƽ¾ùÀ´´úÌæÒ»¸öÏñËØÔÀ´µÄ»Ò¶ÈÖµ£¬ÊµÏÖͼÏñµÄƽ»¬¡£ÖÐÖµÂ˲¨ÊÇÓÃÒ»¸öÓÐÆæÊýµãµÄ»¬¶¯´°¿Ú£¬½«´°¿ÚÖÐÐĵãµÄÖµÓô°¿Ú¸÷µãµÄÖÐÖµ´úÌæ¡£
숱酨주
(1) ¶Ô´óµÄ±ßÔµ¸ß¶È£¬ÖÐÖµÂ˲¨½ÏÁÚÓò¾ùÖµºÃµÃ¶à£¬¶ø¶ÔÓÚ½ÏС±ßÔµ¸ß¶È£¬Á½ÖÖÂ˲¨Ö»ÓкÜÉÙ²î±ð¡£
£¨2£©ÖÐÖµÂ˲¨ÊÇ·ÇÏßÐԵġ£
£¨3£©ÖÐÖµÂ˲¨ÔÚÒÖÖÆÍ¼ÏñËæ»úÂö³åÔëÉù·½ÃæÉõΪÓÐЧ¡£ÇÒÔËËãËٶȿ죬±ãÓÚʵʱ´¦Àí¡£
£¨4£©ÖÐÖµÂ˲¨È¥³ý¹ÂÁ¢Ïß»òµã¸ÉÈÅ£¬¶ø±£Áô¿Õ¼äÇåÎú¶È½Ïƽ»¬Â˲¨ÎªºÃ£»
33
н®´óѧÐÅÏ¢¿ÆÑ§Ó빤³ÌѧԺ
µ«¶Ô¸ß˹ÔëÉùÔò²»ÈçÆ½»¬Â˲¨¡£
3¡¢Í¼ÏñÈñ»¯ÓÐÄÄЩÄÄЩËã×Ó£¿Çëд³öÏàÓ¦µÄËã×Ó¾ØÕó ´ð£ºÍ¼ÏñÈñ»¯µÄËã×ÓÓÐÈçÏ£º
RobertsËã×ÓÄ£°å£º
SobelËã×ÓÄ£°å£º
PrewittËã×ÓÄ£°å£º
LaplacianËã×ÓÄ£°å£º
LOGËã×Ó£º
4¡¢µÍͨºÍ¸ßͨÂ˲¨·Ö±ð¶ÔÊý×ÖͼÏñÆðµ½Ê²Ã´Ð§¹û£¿
´ð£ºµÍͨÂ˲¨¶ÔͼÏñÆðƽ»¬×÷Ó㬸ßͨÂ˲¨¶ÔͼÏñÆðÈñ»¯×÷ÓÃ
5¡¢µÍͨµÄÀíÏëÂ˲¨Æ÷£¬°ÍÌØÎÖ˹Â˲¨Æ÷£¬Ö¸ÊýÂ˲¨Æ÷ƽ»¬Â˲¨ÔÚÆ½»¬Êý×ÖͼÏñÓкÎÇø±ð£¿
´ð£º¼ÈÈ»H(u,v)ÊÇÀíÏëµÄ¾ØÐÎÌØÐÔ£¬ÄÇôËüµÄ·´±ä»»h(x,y)µÄÌØÐÔ±ØÈ»»á²úÉúÎÞÏÞµÄÕñÁåÌØÐÔ¡£¾Óëf(x,y)¾í»ýºóÔò¸øg(x,y)´øÀ´Ä£ºýºÍÕñÁåÏÖÏó£¬D0ԽСÕâÖÖÏÖÏóÔ½ÑÏÖØ£¬µ±È»£¬Æäƽ»¬Ð§¹ûÒ²¾Í½Ï²î¡£ÕâÊÇÀíÏëµÍͨ²»¿É¿Ë·þµÄÈõµã¡£ ÕñÁåЧ¹û¡ª¡ªÀíÏëµÍͨÂ˲¨Æ÷µÄÒ»ÖÖÌØÐÔ ¡£ ButterworthµÍͨ¹ýÂËÆ÷µÄ·ÖÎö
ÔÚÈκξBLPF´¦Àí¹ýµÄͼÏñÖж¼Ã»ÓÐÃ÷ÏÔµÄÕñÁåЧ¹û£¬ÕâÊǹýÂËÆ÷ÔÚµÍÆµºÍ¸ßƵ֮¼äµÄƽ»¬¹ý¶ÉµÄ½á¹û
µÍͨÂ˲¨ÊÇÒ»¸öÒÔÎþÉüͼÏñÇåÎú¶ÈΪ´ú¼ÛÀ´¼õÉÙ¸ÉÈÅЧ¹ûµÄÐÞÊιý³Ì
34
н®´óѧÐÅÏ¢¿ÆÑ§Ó빤³ÌѧԺ
ÓëÀíÏëµÍͨÂ˲¨Æ÷µÄ´¦Àí½á¹ûÏà±È£¬¾ButterworthÂ˲¨Æ÷´¦Àí¹ýµÄͼÏñÄ£ºý³Ì¶È»á´ó´ó¼õÉÙ¡£ÒòΪËüµÄH(u,v)²»ÊǶ¸Ç͵ĽØÖ¹ÌØÐÔ£¬ËüµÄβ²¿»á°üº¬ÓдóÁ¿µÄ¸ßƵ³É·Ý¡£ BLPF´¦Àí¹ýµÄͼÏñÖж¼Ã»ÓÐÕñÁåЧ¹û.ÕâÊÇÓÉÓÚÔÚÂ˲¨Æ÷µÄͨ´øºÍ×è´øÖ®¼äÓÐһƽ»¬¹ý¶ÉµÄÔµ¹Ê¡£ÁíÍ⣬ÓÉÓÚͼÏñÐźű¾ÉíµÄÌØÐÔ£¬ÔÚ¾í»ý¹ý³ÌÖеÄÕÛµüÎó²îÒ²¿ÉÒÔºöÂÔµô¡£ÓÉ´Ë¿ÉÖª£¬Butterworth µÍͨÂ˲¨Æ÷µÄ´¦Àí½á¹û±ÈÀíÏëÂ˲¨Æ÷ΪºÃ¡£
ÓÉÓÚÖ¸½ÌµÍͨÂ˲¨Æ÷Óиü¿ìµÄË¥¼õÂÊ£¬ËùÒÔ£¬¾Ö¸ÊýµÍͨÂ˲¨µÄͼÏñ±ÈButterworthµÍͨÂ˲¨Æ÷´¦ÀíµÄͼÏñÉÔÄ£ºýһЩ¡£ÓÉÓÚÖ¸ÊýµÍͨÂ˲¨Æ÷µÄ´«µÝº¯ÊýÒ²ÓÐ½ÏÆ½»¬µÄ¹ý¶É´ø£¬ËùÒÔͼÏñÖÐҲûÓÐÕñÁåÏÖÏó¡£
ÓÉÓÚÌÝÐÎÂ˲¨Æ÷µÄ´«µÝº¯ÊýÌØÐÔ½éÓÚÀíÏëµÍͨÂ˲¨Æ÷ºÍ¾ßÓÐÆ½»¬¹ý¶É´øÂ˲¨Æ÷Ö®¼ä£¬ËùÒÔÆä´¦ÀíЧ¹ûÒ²½éÓÚÆäÁ½ÕßÖм䡣ÌÝÐÎÂ˲¨·¨µÄ½á¹ûÓÐÒ»¶¨µÄÕñÁåÏÖÏó¡£ ÓõÍͨÂ˲¨Æ÷½øÐÐÆ½»¬´¦Àí¿ÉÒÔʹÔëÉùαÂÖÀªµÈ¼ÄÉúЧӦ¼õµÍµ½²»ÏÔÑ۵ij̶ȣ¬µ«ÊÇÓÉÓÚµÍͨÂ˲¨Æ÷¶ÔÔëÉùµÈ¼ÄÉú³É·ÝÂ˳ýµÄͬʱ£¬¶ÔÓÐÓÃ¸ßÆµ³É·ÝÒ²Â˳ý£¬Òò´Ë£¬ÕâÖÖÈ¥ÔëÉùµÄÃÀ»¯´¦ÀíÊÇÒÔÎþÉüÇåÎú¶ÈΪ´ú¼Û¶ø»»È¡µÄ¡£ ¡¾ÊµÑ鱨¸æÒªÇó¡¿
1¡¢ÊµÑ鱨¸æÐ´Ã÷ʵÑéÌâÄ¿£¬¿É¼òдʵÑéÔÀí£¬ÊµÑéÄÚÈÝ£¬ÏêϸдʵÑé¹ý³ÌºÍʵÑé½á¹û·ÖÎö£¬ÒªÇó¸½Ïà¹Ø³ÌÐò¡£ 2¡¢»Ø´ð˼¿¼Ì⣬дÔÚʵÑ鱨¸æÉÏ
35
н®´óѧÐÅÏ¢¿ÆÑ§Ó빤³ÌѧԺ
ʵÑé5 MATLABʵÏÖͼÏñµÄ¸´Ô£¨2ѧʱ£©
¡¾ÊµÑéÄÚÈÝ¡¿
1¡¢ÈÎѡһ·ù²ÊÉ«·ç¾°Í¼Æ¬×÷ΪԴͼÏñ£¬ÓÃimaddºÍimnoise¸øÍ¼ÏñÌí¼Ó²»Í¬ÀàÐ͵ÄÔëÉù£¬ÏÔʾÔëÉùͼÏñ¡£ ²Î¿¼³ÌÐòÈçÏ£º
a=imread('peppers.png');
b=imnoise(a,'gaussian',0.05);%¸ß˹ÔëÉù c=0.1*randn(size(a));%Ëæ»úÔëÉù d=imadd(a,im2uint8(c));
a=a(10+[1:256],222+[1:256],:);
subplot(1,3,1),imshow(a);title(¡®Ôͼ¡¯) subplot(1,3,2),imshow(b); subplot(1,3,3),imshow(d);
2¡¢ÉèÖò»Í¬µÄÄ£ºý²ÎÊýʵÏÖÈÎÒ»¸±Í¼ÏñµÄÔ˶¯Ä£ºý(fspecial,imfilterº¯Êý)£¬ÏÔʾ½á¹û¡£
a=imread('peppers.png');
a=a(10+[1:256],222+[1:256],:); LEN=50; THETA=39;
PSF=fspecial('motion',LEN,THETA); e=imfilter(a,PSF,'circular','conv'); LEN=100; THETA=39;
PSF=fspecial('motion',LEN,THETA); f=imfilter(a,PSF,'circular','conv'); LEN=20; THETA=39;
PSF=fspecial('motion',LEN,THETA); m=imfilter(a,PSF,'circular','conv'); LEN=50; THETA=10;
36