卫生统计学题库

大,可信区间则越大。

3.假设检验和区间估计有何联系?

假设检验和区间估计都属于统计推断的内容。假设检验用以推断总体参数间是否有质的区别,并可获得样本统计量,以得到相对精确的概率值。而可信区间用于推断总体参数的大小,它不仅可用以回答假设检验的问题,尚可比假设检验提供更多的信息。但这并不意味着用可信区间代替假设检验,因为假设检验可得到P值,比较精确地说明结论的概率保证,而可信区间只能告诉我们在某α水准上有无统计意义,却不能像P那样提供精确的概率。因此,只有将二者有机地结合起来,相互补充,才是完整的分析。

4.假设检验时,一般当P <0.05时,则拒绝H 0,理论依据是什么?

假设检验时,当P<0.05,则拒绝Ho,其理论依据是在Ho成立的条件下, 出现大于等于现有检验统计量的概率P<0.05,它是小概率事件,即在一次 抽样中得到这么小概率是事件是不大可能发生的,因而拒绝它。由此可见, 假设检验的结论是具有概率性的,它存在犯错误的可能性小于等于0.05。

5.t检验和方差分析的应用条件有何异同?

(1)相同点:在均数比较中,t检验和方差分析均要求各样本来自正态总体;各处理 组总体方差齐且各随机样本间相互独立,尤在小样本时更需注意。 (1) 不同点:t检验仅用于两组资料的比较,除双侧检验外,尚可

进行单侧检验,亦可计算一定可信度的可信区间,提示差别有无实际意义。而方 差分析用于两组及两组以上均数的比较,亦可用于两组资料的方差齐性检验。 6. 怎样正确使用单侧检验和双侧检验?

根据专业知识推断两个总体是否有差别时,是甲高于乙,还是乙高于甲,两种可 能都存在时,一般选双侧;若根据专业知识,如果甲不会低于乙,或研究者仅关心 其中一种可能时,可选用单侧。一般来讲,双侧检验较稳妥故较多用,在预实验有 探索性质时,应以专业知识为依据,它充分利用了另一侧的不可能性,故检出效率 高,但应慎用。

7. 第一类错误与第二类错误的区别及联系何在?了解这两类错误有何实际意义? (1)假设检验中Ⅰ、Ⅱ型错误的区别。

Ⅰ型错误是拒绝了实际上成立的Ho,也称为“弃真”错误,用α表

示。统计推断时,根据研究者的要求来确定。

Ⅱ型错误是不拒绝实际上不成立的Ho,也称为“存伪”错误,用β

表示。它只能与特定的H1结合起来才有意义,一般难以确切估计。

(2)Ⅰ、Ⅱ型错误的联系。

① 当抽样例数一定时,α越大,β越小;反之,α越小,β越大。 ② 统计推断中,Ⅰ、Ⅱ型错误均有可能发生,若要使两者都减小,

可适当增加样本含量。

③ 根据研究者要求,n一定时,可通过确定α水平来控制β大小。 (3)了解两类错误的实际意义。 ① 可用于样本含量的估计。

② 可用来计算可信度(1-α),表明统计推断可靠性的大小。 ③ 可用于计算把握度(1-β),来评价检验方法的效能等。 ④ 有助于研究者选择适当的检验水准。

⑤ 可以说明统计结论的概率保证。

25

计算题:

1. 某地抽样调查了部分成人的红细胞数和血红蛋白量,结果如表:

表3-7: 健康成人的红细胞和血红蛋白测得值及标准误与变异系数的计算 性别 例数 均数 标准差 标准值 变异系数(%) 标准误 红细胞数 男 360 4.66 0.58 4.84 12.45 0.0306 (×1012/L) 女 225 4.18 0.29 4.33 6.94 0.0182 血红蛋白 男 360 134.5 7.1 140.2 5.28 0.3742 (g/L) 女 255 117.6 10.2 124.7 8.67 0.6387 (1)说明女性的红细胞数与血红蛋白量的变异程度何者为大? 女性 CVRBC=S/x×100%=0.29/4.18×100%=6.49% CVHB=S/x×100%=10.2/117.6×100%=8.67%

由上计算可知该地女性血红蛋白量比红细胞数变异度大 (2)分别计算男﹑女两项指标的抽样误差。

见上表最后一栏,标准误计算公式sx?s/n。 (3)试估计该地健康成年男﹑女红细胞数的均数。

健康成年男子红细胞数总体均数95%可信区间为: X±1.96Sx=4.66±1.96×0.0306=4.60~4.72(1012/L)

其中n=360 故近似按υ=∞。同理健康成年女子红细胞数总体均数95%可信区间为4.14~4.22(1012/L)

(4)该地健康成年男﹑女间血红蛋白含量有无差别? Ho:μ男=μ女

H1:μ男≠μ女 α=0.05

u=(X1?X2)/(sx1?x2)?(134.5?117.6)/7.22/360?10.22/255=22.83 按υ=∞,查附表2,得P<0.0005,按α=0.05水准,拒绝Ho,接受H1,可 以认为男女间血红蛋白含量不同,男高于女。

2. 将20名某病患者随机分为两组,分别用甲、乙两药治疗,测得治疗前及治疗后一个月

的血沉(mm/小时)如下表,问: (1)甲,乙两药是否均有效?

(2)甲,乙两药的疗效有无差别?

表3-8 甲,乙两药治疗前后的血沉

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 病人号 1 2 3 4 5 6 7 8 9 10 甲 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 药 治疗前 10 13 6 11 10 7 8 8 5 9 治疗后 6 9 3 10 10 4 2 5 3 3 差 值 4 4 3 1 0 3 6 3 2 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 病人号 1 2 3 4 5 6 7 8 9 10

26

乙 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 药 治疗前 9 10 9 13 8 6 10 11 10 10 治疗后 6 3 5 3 3 5 8 2 7 4 差 值 3 7 4 10 5 1 2 9 3 6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ (1)甲,乙两药是否均有效? 经计算得:

甲药 d =3.2000(mm/h) 乙药 d =5.0000(mm/h) Sd =1.9322(mm/h) Sd =2.9810(mm/h) Sd=0.6110(mm/h) Sd =0.9428(mm/h) n=10 n=10 Ho:μd=0 Ho:μd=0 H1:μd≠0 H1:μd≠0 α=0.05 α=0.05 t(甲药)=d/ Sd=3.2000/0.6110=5.237 t(乙药)=d/ Sd=5.0000/0.9428=5.303

?=9,查t界值表,得P<0.001,按α=0.05水准,拒绝Ho,接受H1,故可认为 甲、乙两药均有效。

(2)甲,乙两药的疗效有无差别?

由表中资料分别求得治疗前后差值(见表3-8),再作两组比较。 H0 :甲乙两药疗效相同

H1 :甲乙两药疗效不同 α=0.05

22(n?1)s?(n?1)s9?1.93222?9?2.9814221122SC???6.3110n1?n2?210?10?22Sd1?d2?sc(1/n1?1/n2)?6.3110(1/10?1/10)?1.2622?1.1235d1?d23.2?5.0 t????1.6022

Sd1?d21.1235?=18,查t界值表,得0.20>P>0.10,按α=0.05水准,不拒绝Ho,尚不 能

认为甲乙两药疗效有差别。

3. 将钩端螺旋体病人的血清分别用标准株和水生株作凝溶试验,测得稀释倍数如 下,问两组的平均效价有无差别?

标准株(11人)100 200 400 400 400 400 800 1600 1600 1600 3200 水生株(9人) 100 100 100 200 200 200 200 400 400 由题知:该资料服从对数正态分布,故得:

标准株 水生株 n=11 n=9

Xlgx1 =2.7936 Xlgx2 =2.2676

27

Slgx1 =0.4520 Slgx2 =0.2355 (1)两组方差齐性检验:

2H0:?2 ??122H1:?2 1??2? =0.05

22/S小?0.45202/0.23552?3.684 F=S大V1 =10 V2 =8 F0.05(10,8)=4.30

查附表3,得P>0.05,按α=0.05水准,不拒绝Ho,可以认为两总体方差齐。 (2)两组均数比较;

H0 两总体几何均数相等 H1 两总体几何均数不等 α=0.05

t??X1?X2?SX1?X2X1?X22SC(1/n1?1/n2)?X1?X22[(n1?1)s21?(n2?1)s2]/(n1?n2?2)(1/n1?1/n2)2.7936?2.2676[((11?1)0.4520?(9?1)0.2355)/(11?9?2)]?(1/11?1/9)22?3.149

查t界值表,得0.01>P>0.005,按α=0.05水准,拒绝Ho,接受H1,故可认为钩端螺旋体病人的血清用标准株和水生株作凝溶试验,前者平均抗体效价高于后者 4. 表3-9为抽样调查资料,可做那些统计分析?

表3-9 某地健康成人的第一秒肺通气量(FEV1)(L) FEV1 人 数 男 女 2.0~ 1 4 2.5~ 3 8 3.0~ 11 23 3.5~ 27 33 4.0~ 36 20 4.5~ 26 10 5.0~ 10 2 5.5~ 3 0

28

联系客服:779662525#qq.com(#替换为@)