②鱼藤酮 ⑥CO
③抗霉素A ⑦寡霉素 ④CN- 答:DNP(二硝基苯酚,dinitrophenol):破坏线粒体内膜两侧的电化学梯度,而使氧化与磷酸化偶联脱离,是最常见的解偶联剂;鱼藤酮:抑制NADH→CoQ的电子传递;抗霉素A:抑制Cyt b→Cyt c1的电子传递;CN- 、N3- 、CO:抑制细胞色素氧化酶→O2;寡霉素 : 与F0结合结合,阻断H+通道,从而抑制ATP合成。
当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入DNP 时,电子传递链照常运转,但不能形成ATP;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入鱼藤酮时,会阻断电子从NADH到CoQ的传递,NADH处于还原状态,其后的各组分处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入抗霉素A时,会阻断电子从Cyt b到Cyt c1的传递,Cyt b及其上游组分处于还原状态,Cyt c1及其下游组分处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入CN- 、N3- 、CO时,会阻断电子从细胞色素氧化酶到O2的传递,Cyt c及其上游组分处于还原状态, O2处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入寡霉素时,抑制氧的利用和ATP的形成,使电子传递链不能正常进行,各组分均处于还原状态。
⒏什么是磷/氧比(P/O比),测定磷/氧比有何意义? 答:磷氧比(P/O ratio) 指每吸收一个氧原子所酯化的无机磷分子数,即有几个ADP变成ATP,实质是伴随ADP磷酸化所消耗的无机磷酸的分子数与消耗分子氧的氧原子数之比。 测定磷/氧比的意义在于可以知道不同呼吸链氧化磷酸化的活力。
⒐P/O比、每对电子转运质子数之比(H+/2e)、形成一分子ATP所需质子数的比例、将ATP转运到细胞溶胶所需质子数之比(~ P/H+),它们之间是否有相关性?
答:这些比值之间是有关联的,但并不绝对。虽然电子转移伴随着ATP的合成,但不能仅以P/O比值作为ATP生成数的依据,而应考虑一对电子从NADH或FADH2传递到氧的过程中,有多少质子从线粒体基质泵出,以及有多少质子必须通过ATP合酶返回基质以用于ATP的合成,这样才能从本质上确定ATP的生成数量。目前被广泛接受的观点是:ATP、ADP和无机磷酸通过线粒体内膜的转运是由ATP-ADP载体和磷酸转位酶催化的。已知每合成1个ATP需要3个质子通过ATP合酶。与此同时,把一个ATP分子从线粒体基质转运到胞液需要消耗1个质子,所以每形成1个分子的ATP就需要4个质子的流动。因此,如果一对电子通过NADH电子传递链可泵出10个质子,则可形成2.5 个分子ATP;如果一对电子通过FADH2电子传递链有6个质子泵出,则可形成1.5个ATP分子。
⒑计算琥珀酸由FAD氧化和由NAD+氧化的 ΔG0'值(利用表24-1的数据)。设FAD/FADH2氧-还对的ΔE'0接近于0V。解释为什么在琥珀酸脱氢酶催化的反应中只有FAD能作为电子受体而不是NAD+? 答:据表24-1的数据,琥珀酸由FAD氧化时,ΔG0'=-nF△E/0=-2*23062*(0.815+0.18)=-45.89 Kcal,琥珀酸由NAD+氧化时,ΔG0'=-nF△E/0=-2*23062*(0.815+0.32)=-52.35 Kcal,琥珀酸脱氢酶催化琥珀酸生成延胡索酸,其ΔG0'=-nF△E/0=-2*23062*(0.815+0.031)=-39.02 Kcal, 而当设FAD/FADH2氧-还对的ΔE'0接近于0V时,其ΔG0'=-nF△E/0=-2*23062*(0.815+0.0)=-37.59, 琥珀酸脱氢酶催化琥珀酸生成延胡索酸产生的自由能略大于FAD/FADH2氧-还对氧化时产生的自由能,小于NAD+氧化时产生的自由能,因此琥珀酸在琥珀酸脱氢酶催化的反应中只有FAD能作为电子受体而不是NAD+。
⒒电子传递链产生的质子电动势为0.2V,转运2、3、4个质子,温度为25℃,所得到的有效自由能为多少?用这些能可合成多少ATP分子?
答:根据公式ΔG0'=nF△E/0?? , 电子传递链产生的质子电动势为0.2V,转运2、3、4个质子所能得到的有效自由能分别为:38.56 KJ/mol、57.84 KJ/mol、77.11 KJ/mol。由于在生理条件下合成一分子ATP大约需要40-50 KJ/mol的自由能,因此,转运2至3个质子,可合成1个ATP分子,转运4个质子大约可合成1-2个ATP分子。
第25章 戊糖磷酸途径和糖的其他代谢途径
⒈向含有戊糖磷酸途径全部有关酶和辅助因子的溶液中,加入在C6上具有放射性标记的葡萄糖,请问哪些物质上会有放射性标记? 答:核糖-5-磷酸C5出现放射性标记
⒉写出由葡萄糖-6-磷酸转变为核糖-5-磷酸,不必同时计算NADPH的化学方程式。 答:5葡萄糖-6-磷酸 ??→核糖-5-磷酸+ADP+H+)
⒊写出葡萄糖-6-磷酸合成NADPH而不涉及戊糖的化学方程式。 答:葡萄糖-6-磷酸+12NADPH+7H20 ??→ CO2+12NADPH+12H++Pi
⒋鸡蛋清中有一种对生物素亲和力极高的抗生物素蛋白。它是含生物素酶的高度专一的抑制剂,请考虑它对下列反应有无影响:
①葡萄糖 ??→丙酮酸 ②丙酮酸??→葡萄糖 ③核糖-5-磷酸??→葡萄糖 ④丙酮酸??→草酰乙酸 答:生物素是丙酮酸羧化酶的辅基,该酶可羧化丙酮酸生成草酰乙酸并进而逐步生成葡萄糖。因此,鸡蛋清中对生物素亲和力极高的抗生物素蛋白对反应1和3无影响,对反应2和4有影响。
⒌计算从丙酮酸合成葡萄糖需提供多少高能磷酸键? 答:需6个高能磷酸键。
⒍维持还原型谷胱苷肽[GSH]的浓度为10mmol/L,氧化型[GSSH]的浓度为1mmol/L,所需的NADPH/NADP+比例应是多少?(参看第24章氧还电势表)
答:谷胱苷肽由NADPH还原的ΔE0'=+0.09V,因此ΔG0'=-4.15kcal/mol。相应的平衡常数为1126所需的[NADPH]/[NADP+]比值等于8.9×10-2。
⒎比较柠檬酸循环途径和戊糖磷酸途径的脱羧反应机制。
答:在柠檬酸循环途径有2步脱羧反应,其机制分别是:在异柠檬酸脱氢酶催化下,异柠檬酸脱氢被氧化成草酰琥珀酸,然后脱掉CO2并加上一H+,生成α-酮戊二酸;α-酮戊二酸地α-酮戊二酸脱氢酶系催化下,脱掉CO2,生成羟丁基-TPP,羟丁基-TPP与硫辛酰胺及CoA-SH 反应,生成琥珀酰-CoA。
戊糖磷酸途径的脱羧反应发生在6-磷酸葡萄糖生成核酮糖-5-磷酸的反应中,其机制为:葡萄糖-6-磷酸脱氢酶催化下,葡萄糖-6-磷酸形成6-磷酸葡萄糖酸-δ-内酯,6-磷酸葡萄糖酸-δ-内酯在一专一内酯酶作用下水解,形成6-磷酸葡萄糖酸,6-磷酸葡萄糖酸在6-磷酸葡萄
糖酸脱氢酶作用下,形成核酮糖-5-磷酸。
⒏糖酵解 、戊糖磷酸途径和葡糖异生途径之间如何联系?
答:磷酸戊糖途径以葡萄糖-6-磷酸为起始物进入一个循环过程。该途径的第一阶段涉及氧化性脱羧反应,生成5-磷酸核酮糖和NADPH。第二阶段是非氧化性的糖磷酸酯的相互转换。由于转酮醇酶和转醛醇酶催化反应的可逆性,使磷酸戊糖途径与糖酵解以及糖的异生作用发生了密切的联系,各途径中的中间物如果糖-6-磷酸和甘油醛-3-磷酸等可以根据细胞的需要进入到对方代谢途径中去。
⒐比较糖醛酸循环和柠檬酸循环。糖醛酸的存在有何特殊意义?
答:糖醛酸途径(glucuronate pathway)是指从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。柠檬酸循环(citric acid cycle)是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。
糖醛酸的存在有何特殊意义有:在肝中糖醛酸与药物(含芳环的苯酚、苯甲酸)或含-OH、-COOH、-NH2、-SH基的异物结合成可溶于水的化合物,随尿、胆汁排出,起解毒作用;UDP糖醛酸是糖醛酸基的供体,用于合成粘多糖(硫酸软骨素、透明质酸、肝素等);从糖醛酸可以转变成抗坏血酸(人及灵长动物不能,缺少L-古洛糖酸内酯氧化酶);从糖醛酸可以生成5-磷酸木酮糖,可与磷酸戊糖途径连接。
⒑为什么有人不能耐受乳糖?而乳婴却靠乳汁维持生命?
答:有些人小肠中的乳糖酶活性很低或是没有,致使乳糖不能消化或是消化不完全,不能被小肠吸收。乳糖在小肠内会产生很强的渗透效应,流向大肠。在大肠内,乳糖被细菌转变为有毒物质,出现腹胀、恶心、绞痛以及腹泻等所谓乳糖不耐受症状。
由于绝大多数乳婴小肠中含有足够活性的乳糖酶,因此能消化乳糖,可能靠乳汁为生。
⒒糖蛋白中寡糖与多肽链的连接形式有几种类型?
答:糖蛋白中寡糖与多肽链的,简称糖肽键。糖肽链的类型可以概况为:
①N-糖苷键型:寡糖链(GlcNAC的β-羟基)与Asn的酰胺基、N-未端的a-氨基、Lys或Arg的W-氨基相连。
② O-糖苷键型:寡糖链(GalNAC的α-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基相连。
③ S-糖苷键型:以半胱氨酸为连接点的糖肽键。
④ 酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。
⒓N-连寡糖和O-连寡糖的生物合成有何特点? 答:N-连寡糖和O-连寡糖的生物合成特点分别是N-糖链的合成是和肽链的生物合成同时进行的,而O-糖链的合成是在肽链合成后,对肽链进行修饰加工时将糖基逐个连接上去的。
第26章 糖原的分解和生物合成
⒈写出糖原分子中葡萄糖残基的连接方式。
答:糖原分子中葡萄糖残基的连接方式有两种,一种是以α(1,4)糖苷键连接,另一种是在多糖分子的分支处,以α(1,6)糖苷键连接。
⒉糖原降解为游离的葡萄糖需要什么酶?
答:糖原降解为游离的葡萄糖需要的酶有:糖原磷酸化酶、糖原脱支酶、磷酸葡萄糖变位酶和葡萄糖-6-磷酸酶。
⒊糖原合成需要什么酶?
答:糖原合成需要的酶有:UDP-葡萄糖焦磷酸化酶、糖原合成酶和糖原分支酶。
⒋从“O”开始合成糖原需要什么条件? 答:由于糖原合成酶只能催化将葡萄糖残基加到已经具有4个以上葡萄糖残基的葡聚糖分子上,因此,从“O”开始合成糖原需要有一种被叫做生糖原蛋白的“引物”存在。
⒌肾上腺素 、胰高血糖素对糖原的代谢怎样起调节作用?
答:机体血糖降低可引起胰高血糖素和肾上腺素分泌增加,此时细胞内cAMP含量增加,促使有活性的a激酶增加。a激酶一方面时糖原合酶磷酸化失去活性,一方面通过磷酸化酶b激酶使磷酸化酶变成有活性的磷酸化酶a,最终结果使糖原合成减少,糖原分解增加,使血糖升高。
当激素水平降低时,一方面由于已生成的cAMP被磷酸二酯酶分解为5、AMP,从而停止对糖原降解的刺激作用;另一方面又由于磷酸化酶a去磷酸化转变为磷酸化酶b而使糖原降解停止。
⒍血糖浓度如何维持相对稳定? 答:维持正常的血糖浓度对于维持机体的正常生命活动,特别是脑细胞的功能具有极其重要的意义。
血糖的来源主要是糖类食物(主要是淀粉)消化吸收后进入血液,其次为肝糖原和肌糖原分解为葡萄糖(糖原为多糖,又称动物淀粉),在饥饿时主要依靠糖异生,即从非糖物质(如氨基酸、甘油、乳酸等)转变为葡萄糖。糖类食物消化后的产物葡萄糖吸收入血后,在胰岛素的作用下,一部分进入组织细胞氧化分解释放出能量,供细胞利用;剩余部分在肝脏和肌肉合成肝糖原和肌糖原贮存起来,因此,血糖不断被组织细胞利用,肝糖原和肌糖原又不断分解释放葡萄糖入血,维持血糖浓度的相对稳定。
但肝脏和肌肉贮存糖原的量有限,如果消化道不继续吸收葡萄糖入血(饥饿不进食时),血糖势必要降低。在这种情况下体内的脂肪便开始分解,成为体内能量的主要来源。脂肪分解产生的甘油经糖异生转变为葡萄糖,产生的脂肪酸可被体内大多数组织细胞(脑细胞除外)利用,这样又可节省部分葡萄糖为脑细胞利用,也可减少或不动用蛋白质。如果饥饿时间较长,不但脂肪分解,而且体内蛋白质也分解,分解产生的氨基酸也经糖异生转变为葡萄糖,以维持基本的血糖水平。通过糖原分解、糖异生及动用脂肪,即使饥饿几天后,血糖浓度也仅降低百分之几。
⒎将一肝病患者的糖原样品与正磷酸 、磷酸化酶 、脱支酶(包括转移酶)共同保温,结果得到葡萄糖-1-磷酸和葡萄糖的混合物二者的比值: 葡萄糖-1-磷酸
??????? =100,试推测该患者可能缺乏哪种酶? 葡萄糖
答:患者缺乏脱支酶。