(完整)六年级奥数-第七讲.行程问题(一).教师版

此可知,间隔距离=(公交速度-骑车速度)×9分钟=2×骑车速度×9分钟=3×骑车速度×6分钟=公交速度×6分钟. 所以公交车站每隔6分钟发一辆公交车.

【例 7】 某人乘坐观光游船沿顺流方向从A港到B港。发现每隔40分钟就有一艘货船从后面追上游船,每

隔20分钟就会有一艘货船迎面开过,已知A、B两港间货船的发船间隔时间相同,且船在净水中的速度相同,均是水速的7倍,那么货船发出的时间间隔是__________分钟。 【解析】 由于间隔时间相同,设顺水两货船之间的距离为“1”,逆水两货船之间的距离为(7-1)÷(7+1)

=3/4。所以,货船顺水速度-游船顺水速度=1/40,即货船静水速度-游船静水速度=1/4,货船逆水速度+游船顺水速度=3/4×1/20=3/80,即货船静水速度+游船静水速度=3/80,可以求得货船静水速度是(1/40+3/80)÷2=1/32,货船顺水速度是1/32×(1+1/7)=1/28),所以货船的发出间隔时间是1÷1/28=28分钟。

模块二 火车过桥

【例 8】 小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5 米/秒,这时迎面开来一列火

车,从车头到车尾经过他身旁共用了 20秒.已知火车全长 390米,求火车的速度.

【答案】18米/秒

【例 9】 小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车

从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?

【解析】 火车的时速是:100÷(20-15)×60×60=72000(米/小时),车身长是:20×15=300(米)

【例 10】 列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方有一辆与

它同向行驶的货车,货车车身长 320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?

【解析】 列车的速度是 (250 -210) ÷(25 -23) =20 (米/秒),列车的车身长: 20 ×25- 250 =250 (米).列

车与货车从相遇到相离的路程差为两车车长,根据路程差 ? 速度差?追击时间,可得列车与货车从相遇到相离所用时间为: (250 +320)÷ (20 -17)= 190 (秒).

【例 11】 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150

米.时速为72千米的列车相遇,错车而过需要几秒钟?

【解析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),

某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)

某列车的车长为:20×25-250=500-250=250(米),

两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

【例 12】 李云靠窗坐在一列时速 60千米的火车里,看到一辆有 30节车厢的货车迎面驶来,当货车车

头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2 米,货车车头长10米.问货车行驶的速度是多少?

【解析】 本题中从货车车头经过窗口开始计算到货车最后一节车厢驶过窗口,相当于一个相遇问题,总路程

为货车的车长.货车总长为: (15.8× 30+ 1.2× 30 +10) ÷1000 =0.52 (千米), 火车行进的距离为:60×18/3600=0.3 (千米), 货车行进的距离为: 0.52- 0.3 =0.22(千米), 货车的速度为:0.22÷18/3600=44 (千米/时).

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@)