数学
一、等差数列
1.等差数列的定义:an?an?1?d(d为常数)(n?2);
2.等差数列通项公式:
an?a1?(n?1)d?dn?a1?d(n?N*) , 首项:a1,公差:d,末项:an 推广: an?am?(n?m)d. 从而d?
3.等差中项
(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A?(2)等差中项:数列?an?是等差数列?2an?an-1
4.等差数列的前n项和公式:
a?b或2A?a?b 2?an?1(n?2)?2an?1?an?an?2
an?am;
n?mSn?n(a1?an)n(n?1)d1?na1?d?n2?(a1?d)n?An2?Bn 2222(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)
特别地,当项数为奇数2n?1时,an?1是项数为2n+1的等差数列的中间项
S2n?1??2n?1??a1?a2n?1??2?2n?1?an?1(项数为奇数的等差数列的各项和等于项数乘以中间项)
5.等差数列的判定方法
(1) 定义法:若an?an?1?d或an?1?an?d(常数n?N?)? ?an?是等差数列. ⑶数列?an?是等差数列?an?kn?b(其中k,b是常数)。
2(2) 等差中项:数列?an?是等差数列?2an?an-1?an?1(n?2)?2an?1?an?an?2. (4)数列?an?是等差数列?Sn?An?Bn,(其中A、B是常数)。
6.等差数列的证明方法
?定义法:若an?an?1?d或an?1?an?d(常数n?N)? ?an?是等差数列.
7.提醒:
(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)设项技巧:
①一般可设通项an?a1?(n?1)d
②奇数个数成等差,可设为?,a?2d,a?d,a,a?d,a?2d?(公差为d);
③偶数个数成等差,可设为?,a?3d,a?d,a?d,a?3d,?(注意;公差为2d)
8..等差数列的性质: (1)当公差d?0时,
等差数列的通项公式an?a1?(n?1)d?dn?a1?d是关于n的一次函数,且斜率为公差d;
前n和Sn?na1?n(n?1)ddd?n2?(a1?)n是关于n的二次函数且常数项为0. 222
(2)若公差d?0,则为递增等差数列,若公差d?0,则为递减等差数列,若公差d?0,则为常数列。
(3)当m?n?p?q时,则有am?an?ap?aq,特别地,当m?n?2p时,则有am?an?2ap.
注:a1?an?a2?an?1?a3?an?2????,
- 1 -
数学
(4)若?an?、?bn?为等差数列,则??an?b?,??1an??2bn?都为等差数列
(5) 若{an}是等差数列,则Sn,S2n?Sn,S3n?S2n ,?也成等差数列
(6)数列{an}为等差数列,每隔k(k?N*)项取出一项(am,am?k,am?2k,am?3k,???)仍为等差数列
(7)设数列?an?是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和
1.当项数为偶数2n时,
S奇?a1?a3?a5?????a2n?1?S偶?a2?a4?a6?????a2n?S奇S偶nana?n