【解答】解:原式===5ab, 当a=原式=5
,b=1时, .
?ab(a+b)
÷
【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 18.(6分)解不等式组
.
【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【解答】解:解①得:x>﹣1, 解②得:x≤2,
则不等式组的解集是:﹣1<x≤2.
【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 19.(6分)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.
,
【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边”证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.
【解答】证明:∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°, ∵BF⊥AE,DG⊥AE,
∴∠AFB=∠AGD=∠ADG+∠DAG=90°, ∵∠DAG+∠BAF=90°, ∴∠ADG=∠BAF, 在△BAF和△ADG中, ∵
,
∴△BAF≌△ADG(AAS), ∴BF=AG,AF=DG, ∵AG=AF+FG, ∴BF=AG=DG+FG, ∴BF﹣DG=FG.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.
20.(7分)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.
【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.
【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分, 依题意,得:解得:x=80,
经检验,x=80是原方程的解,且符合题意, ∴1.25x=100.
答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.
﹣
=10,
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 21.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查
结
果
绘
制
成
如
下
两
幅
不
完
整
的
统
计
图
:
(1)本次随机调查了多少名学生?
(2)补全条形统计图中“书画”、“戏曲”的空缺部分;
(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;
(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示)
【分析】(1)由器乐的人数及其所占百分比可得总人数;
(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;
(3)利用样本估计总体思想求解可得;
(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可. 【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);
(2)书画的人数为200×25%=50(人),戏曲的人数为200﹣(50+80+30)=40(人), 补全图形如下:
(3)估计全校学生选择“戏曲”类的人数约为1200×
(4)列表得:
A B C D A BA CA DA B AB CB DB C AC BC DC D AD BD CD =240(人);
∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果, ∴恰好抽到“器乐”和“戏曲”类的概率为
=.
【点评】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
22.(7分)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,
≈1.732.)
【分析】延长CD,交过A点的水平线AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可
【解答】解:延长CD,交AE于点E,可得DE⊥AE,