ÂÛÎÄ1

Î人Àí¹¤´óѧ¡¶Í¨ÐÅϵͳ¿ÎȺ×ÛºÏѵÁ·ÓëÉè¼Æ¡·¿Î³ÌÉè¼ÆËµÃ÷

8С½á

ÔÚ±¾´Î¿Î³ÌÉè¼ÆÖУ¬ÎÒÊìϤÁËÕû¸öͨÐÅϵͳµÄ¹¤×÷Ô­Àí£¬Á˽âÁËPCM±à½âÂë¡¢HDB3±à½âÂ롢ѭ»·Âë±à½âÂë¡¢PSKµ÷ÖÆ½âµ÷µÄÔ­ÀíºÍMATLAB±à³Ì£¬Ò²Ñ§Ï°ºÜ¶àеÄMATLABµÄº¯Êý¡£

ËäȻ֮ǰÓнӴ¥MATLABÕâ¸öÈí¼þ£¬µ«ÊÇÒ²Ö»ÊÇ»áµ÷ÓÃһЩ¼òµ¥µÄº¯ÊýÀ´×ö¼ÆË㣬»òÓÃһЩ¼òµ¥µÄ»­Í¼ÃüÁîÀ´×÷ͼ£¬Ò»Ö±¾õµÃÕâ¸ö·ÂÕæÈí¼þµÄ¹¦ÄܺÜÇ¿´ó£¬µ«Ã»ÓÐÔõôÉîÈëµØÈ¥ÔËÓá£Õâ´ÎµÄ¿ÎÉèÈÃÎÒÖªµÀ£¬ÎÒ֮ǰ¶ÔËüµÄÁ˽â¼òÖ±Ö»ÊDZùɽһ½Ç¡£¶øÒªÓÃËüÀ´ÊµÏÖ×Ô¼ºµÄרҵĿµÄ£¬¸üÊÇÔö¼ÓÁËÄѶȡ£½«ÔÚ¿ÎÌÃÉÏѧµ½µÄÀíÂÛ֪ʶÓÃËüÀ´·ÂÕæÊµÏÖ£¬Õâ¾ÍÒªÇóÎÒÃǶÔÀíÂÛ֪ʶÓÐÈ«ÃæÉîÈë͸³¹µÄÀí½â£¬²¢ÇÒºÜÊìϤ·ÂÕæÈí¼þ£¬µ«ÎÒÔÚÕâÁ½¸ö·½Ãæ¶¼ÓÐǷȱ£¬ËùÒÔʵ¼Ê²Ù×÷ÆðÀ´Ò²Ã»ÓиտªÊ¼ÏëÏóµÄÄÇÑùÈÝÒס£

ÔÚÉè¼Æ¹ý³ÌÖУ¬ÎÒµÄMATLABʹÓÃÄÜÁ¦ÓÖ½øÒ»²½ÌáÉýÁË£¬¶øÇÒÈÃÎÒ¸ü¼Óϲ»¶MATLABÁË¡£±à³Ì¹ý³ÌÖÐÓöµ½Á˺ܶàÀ§ÄÑ£¬ÆäÖÐ×î´óµÄÀ§ÄѱãÊÇHDB3ÂëµÄ±àд¹ý³Ì¡£´Ë¼äÎÒ»¨Á˺ü¸ÌìµÄʱ¼ä£¬³¢ÊÔÁËÒ»´ÎÓÖÒ»´Î£¬×îÖÕ°ÑHDB3ÂëдÁ˳öÀ´£¬²»¿É·ñÈÏ£¬´Ë´Î¿ÎÉèÎÒ×öµÃ×îºÃµÄ²¿·Ö¾ÍÊÇHDB3ÂëµÄ²¿·Ö¡£ÕâÒ²ËãÊÇÒ»ÖÖο½å°É¡£

Õâ´ÎµÄ¿Î³ÌÉè¼ÆÈÃÎÒÊÕ»ñÆÄ·á£¬Í¬Ê±Ò²ÈÃÎÒ·¢ÏÖÁË×ÔÉíµÄ²»×ã¡£Ôڴ˼䷢ÏֵIJ»×㣬ÎÒ½«Å¬Á¦¸ÄÉÆ£¬Í¨¹ýѧϰ¡¢Êµ¼ùµÈ·½Ê½²»¶ÏÌá¸ß£¬¿Ë·þÄÇЩ²»Ó¦³ÉΪѧϰ¡¢»ñµÃ֪ʶµÄÕϰ­¡£ÔÚ±à³ÌµÄ¹ý³ÌÖÐÒª²»¶Ïѧϰ£¬³ÌÐòÐèҪʲô֪ʶÔÙÈ¥²¹³ä£¬±à³ÌÊÇÒ»µãÒ»µã»ýÀ۵ģ¬ËùÒÔÐèÒª×öÒ»Ð©ËæÊֱʼÇʲôµÄ£¬±ÈÈ磬±¾´ÎÉè¼ÆÖÐÐèÒªÏÈÁ˽âmatlabÔÚÓïÒô´¦Àí·½ÃæµÄº¯Êý¼°Ê¹Ó÷½·¨£¬Ñ§Ï°Ò»²½Ò»²½À´£¬Èç¹ûÌ«¼±ÓÚ°ÑËùÓж«Î÷¶¼Ñ§µ½£¬Ò²ÊDz»ºÃµÄ£¬¸üÊÇʵÏÖ

²»

ÁË

µÄ

¡£

30

Î人Àí¹¤´óѧ¡¶Í¨ÐÅϵͳ¿ÎȺ×ÛºÏѵÁ·ÓëÉè¼Æ¡·¿Î³ÌÉè¼ÆËµÃ÷

²Î¿¼ÎÄÏ×

[1]ÁõȪ£¬³ÂÓÀÌ©.ͨÐŵç×ÓÏß·(µÚ¶þ²¿)[M].Î人Àí¹¤´óѧ³ö°æÉç,2005Äê1Ô [2]·®²ýÐÅ£¬²ÜÀöÄÈ.ͨÐÅÔ­Àí(µÚÁù°æ)[M].·À¿Æ¼¼³ö°æÉç 2008Äê1Ô [3]Öܾ¼ÅÍ£¬ÅÓÇß»ªµÈ.ͨÐÅÔ­Àí£¨µÚÈý°æ£©[M].±±¾©Óʵç´óѧ³ö°æÉ磬2008Äê [4]Ѧɽ.MATLAB2012¼òÃ÷½Ì³Ì[M].Ç廪´óѧ³ö°æÉ磬2013Äê6ÔÂ

[5]ÕÅÖ¾Ó¿.¾«Í¨MATLAB 2011a£¨µÚÒ»°æ£©[M].±±¾©º½¿Õº½Ìì´óѧ³ö°æÉç,2011Äê12Ô [6]THEX-1ÐÍʵÑéÆ½Ì¨ÊµÑéÖ¸µ¼Êé

31

Î人Àí¹¤´óѧ¡¶Í¨ÐÅϵͳ¿ÎȺ×ÛºÏѵÁ·ÓëÉè¼Æ¡·¿Î³ÌÉè¼ÆËµÃ÷

¸½Â¼

%ͨÐÅϵͳ¹ý³ÌµÄMATLAB·ÂÕæ

%*******************************************************************% %PCM±àÂ벿·Ö

%*******************************************************************% clear;clc;

N=8;%±àÂëλÊýΪ8λ dt=1/16;%³éÑùʱ¼ä¼ä¸ô endtime=4;

t=0:dt:endtime;%ʱ¼ä·¶Î§É趨 %³éÑù

for i=1:endtime/dt x(i)=sin(dt*i*pi); end figure(1); subplot(211); plot(x); grid on;

a=-1;b=1;%Á¿»¯·¶Î§É趨 dv=(b-a)/2^7;%Á¿»¯¼ä¸ô for i=1:128

m(i)=a+i*dv;%Á¿»¯Öµ end

for i=1:128-1;

q(i)=(m(i)+m(i+1))/2;%Á¿»¯ÖÐÖµ end

minm=min(m); %Á¿»¯

for i=1:endtime/dt; for j=1:128-1

if((x(i)>=m(j))&&(x(i)<=m(j+1))) xq(i)=q(j); xc(i)=j-64+1; elseif x(i)==0 xq(i)=0;

32

Î人Àí¹¤´óѧ¡¶Í¨ÐÅϵͳ¿ÎȺ×ÛºÏѵÁ·ÓëÉè¼Æ¡·¿Î³ÌÉè¼ÆËµÃ÷

xc(i)=0; elseif x(i)

subplot(212); stem(xc); grid on;

for i=1:endtime/dt

if xc(i)<=0 %¸º¼«ÐÔ×î¸ßλΪ0 xcc(i)=abs(xc(i));

elseif xc(i)>0 %Õý¼«ÐÔ×î¸ßλΪ1 xcc(i)=(xc(i))+128; end end

xpcm=dec2bin(xcc,8);%½«Á¿»¯Öµ×ª»¯Îª0£¬1´úÂë

%HDB3ÂëµÄ±àÂë¹ý³Ì

%*******************************************************************% %ÊäÈëΪxpcm for i=1:endtime/dt

ff(8*(i-1)+1:8*i)=xpcm(i,:); end%½«µÃµ½µÄPCMÂëת»»ÎªÒ»Î¬ÐòÁÐ realpcm=[];

for i=1:endtime/dt*8 realpcm(i)=bin2dec(ff(i)); end figure(2) subplot(3,1,1); stairs(realpcm);

axis([0 15 -2.5 2.5]);grid on; title('PCM');

33

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)