2018版高中物理第一章碰撞与动量守恒1.3动量守恒定律导学案教科版选修3-5

动量不守恒,枪和车组成的系统受到系统外弹簧对枪的作用力,系统动量不守恒.枪弹和枪筒之间的摩擦力属于内力,但枪筒受到车的作用力,属于外力,故二者组成的系统动量不守恒.枪、弹、车组成的系统所受合外力为零,系统动量守恒,故D正确.

2. (多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力使弹簧压缩,如图5所示.当撤去外力后,下列说法正确的是( )

图5

A.a尚未离开墙壁前,a和b组成的系统动量守恒 B.a尚未离开墙壁前,a和b组成的系统动量不守恒 C.a离开墙壁后,a和b组成的系统动量守恒 D.a离开墙壁后,a和b组成的系统动量不守恒 答案 BC

解析 a尚未离开墙壁前,墙壁对a有冲量,a和b构成的系统动量不守恒;a离开墙壁后,系统所受外力之和等于零,系统的动量守恒.

动量守恒定律的简单应用

3.如图6所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m1,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为( )

图6

A.v0-v2 C.v0-v2 答案 D

解析 根据分离前后系统动量守恒定律可得: (m1+m2)v0=m1v1+m2v2

解得:v1=v0+(v0-v2),故D项正确.

4.两小孩在冰面上乘坐“碰碰车”相向运动.A车总质量为50 kg,以2 m/s的速度向右运动;B车总质量为70 kg,以3 m/s的速度向左运动;碰撞后,A以1.5 m/s的速度向左运动,则B的速度大小为多少?方向如何?

B.v0+v2 D.v0+(v0-v2)

m2

m1m2m1

m2m1

答案 0.5 m/s 方向向左

解析 由动量守恒定律得:规定向右为正方向,mAvA-mBvB=-mAvA′+mBvB′,解得vB′=-0.5 m/s,所以B的速度大小是0.5 m/s,方向向左.

(时间:60分钟)

题组一 对动量守恒条件的理解

1.关于系统动量守恒的条件,下列说法中正确的是( ) A.只要系统内存在摩擦力,系统的动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统的动量就不守恒 C.只要系统所受的合外力为零,系统的动量就守恒

D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒 答案 C

解析 根据动量守恒的条件即系统所受外力的矢量和为零可知,选项C正确;系统内存在摩擦力,若系统所受的合外力为零,动量也守恒,选项A错误;系统内各物体之间有着相互作用,对单个物体来说,合外力不一定为零,加速度不一定为零,但整个系统所受的合外力仍可为零,动量守恒,选项B错误;系统内所有物体的加速度都为零时,各物体的速度恒定,动量恒定,总动量一定守恒,选项D错误.

2.如图1所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )

图1

A.甲木块的动量守恒 B.乙木块的动量守恒

C.甲、乙两木块所组成系统的动量守恒 D.甲、乙两木块所组成系统的动能守恒 答案 C

解析 两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.

3.如图2所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( )

图2

A.男孩和木箱组成的系统动量守恒 B.小车与木箱组成的系统动量守恒

C.男孩、小车与木箱三者组成的系统动量守恒 D.木箱的动量增量与男孩、小车的总动量增量相同 答案 C

解析 由动量守恒定律成立的条件可知男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项D错误.

4.(多选)在光滑水平面上A、B两小车中间有一弹簧,如图3所示,用手抓住小车并将弹簧压缩后使小车处于静止状态.将两小车及弹簧看成一个系统,下面说法正确的是( )

图3

A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手后,动量不守恒 C.先放开左手,后放开右手,总动量向左

D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 答案 ACD

解析 在两手同时放开后,水平方向无外力作用,只有弹簧的弹力(内力),故动量守恒,即系统的总动量始终为零,A对;先放开左手,再放开右手后,是指两手对系统都无作用力之后的那一段时间,系统所受合外力也为零,即动量是守恒的,B错;先放开左手,系统在右手作用下,产生向左的作用力,故有向左的冲量,再放开右手后,系统的动量仍守恒,即此后的总动量向左,C对;其实,无论何时放开手,只要是两手都放开后就满足动量守恒的条件,即系统的总动量保持不变,D对. 题组二 动量守恒定律的简单应用

5.在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面撞上了一辆质量为3 000 kg向北行驶的卡车,碰撞后两辆车接在一起,并向南滑行了一小段距离后停下,根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰撞前的行驶速率( ) A.小于10 m/s

B.大于20 m/s,小于30 m/s C.大于10 m/s,小于20 m/s

D.大于30 m/s,小于40 m/s 答案 A

解析 两车碰撞过程中系统动量守恒,两车相撞后向南滑行,则系统动量方向向南,即p客>p卡

,1 500×20>3 000×v,解得v<10 m/s,故A正确.

6. (多选)如图4所示,A、B两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p1和p2,碰撞后A球继续向右运动,动量大小为p1′,此时B球的动量大小为p2′,则下列等式成立的是( )

图4

A.p1+p2=p1′+p2′ C.p1′-p1=p2′+p2 答案 BD

解析 因水平面光滑,所以A、B两球组成的系统在水平方向上动量守恒.以向右为正方向,由于p1、p2、p1′、p2′均表示动量的大小,所以碰前的动量为p1-p2,碰后的动量为p1′+p2′,B对.经变形得-p1′+p1=p2′+p2,D对.

7.将静置在地面上质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( ) A.v0 B.v0 C.答案 D

解析 火箭模型在极短时间点火,设火箭模型获得速度为v,据动量守恒定律有0=(M-m)v-mv0,得v=

B.p1-p2=p1′+p2′ D.-p1′+p1=p2′+p2

mMMmmv0 D.v0 M-mM-mMv0,故选D. M-mm8.质量为M的木块在光滑水平面上以速度v1向右运动,质量为m的子弹以速度v2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( ) A.C.

M+mv1

mv2

B.D.

Mv1

M+mv2mv1

Mv2

Mv1

mv2

答案 C

解析 设发射子弹的数目为n,选择n颗子弹和木块M组成的系统为研究对象.系统在水平方向所受的合外力为零,满足动量守恒的条件.设木块M以v1向右运动,连同n颗子弹在射入前向左运动为系统的初状态,子弹射入木块后停下来为末状态.选子弹运动的方向为正

联系客服:779662525#qq.com(#替换为@)