4 Ä£ÄâÂ˲¨Æ÷µÄ±Æ½üÀíÂÛ
ÓÉÓÚʵ¼ÊµÄÂ˲¨Æ÷ÓëÀíÏëµÄÂ˲¨Æ÷´æÔÚ²î¾à£¬ËùÒÔÎÒÃÇÿ¸öÂ˲¨Æ÷¶¼ÓÐÒ»¸öÔÐÍÓëÖ®¶ÔÓ¦¡£±¾Õ½éÉܳ£ÓõÄÄ£ÄâÔÐÍÂ˲¨Æ÷µÄÖ÷ÒªÌØµã¼°ÆäMATLABʵÏÖ£¬°üÀ¨Butterworth¡¢Chebyshev I, ChebyshevII, Elliptical¡¢BesselÔÐ͵ÍͨÂ˲¨Æ÷µÄÉè¼Æ¡£Ä£ÄâÔÐÍÂ˲¨Æ÷Ö¸µÄÊǽØÖ¹ÆµÂÊΪ1µÄÂ˲¨Æ÷¡£ºóÃæËù½²µÄ¸÷ÀàÄ£ÄâÂ˲¨Æ÷ºÍÊý×ÖÂ˲¨Æ÷¿Éͨ¹ýÕâЩµÍͨÔÐÍÂ˲¨Æ÷±ä»»µÃµ½¡£
4.1 ButterworthÂ˲¨Æ÷
ButterworthÄ£ÄâµÍͨÂ˲¨Æ÷µÄƽ·½·ùƵÏìÓ¦º¯ÊýΪ£º
H?j???A?2???211????c?2N £¨16£©
ʽÖУ¬?cΪµÍͨÂ˲¨Æ÷µÄ½ØÖ¹ÆµÂÊ£¬NΪÂ˲¨Æ÷µÄ½×Êý¡£
ButterworthÂ˲¨Æ÷µÄÌØµã£ºÍ¨´øÄÚ¾ßÓÐ×î´óƽ̹µÄƵÂÊÌØÐÔ£¬ÇÒËæ×ÅÆµÂÊÔö´óƽ»¬µ¥µ÷Ͻµ£»½×ÊýÓú¸ß£¬ÌØÐÔÓú½Ó½ü¾ØÐΣ¬¹ý¶É´øÓúÕ¡£´«µÝº¯ÊýÎÞÁãµã£¬¼«µãµÈ¾àÀëµØ·Ö²¼ÔÚÒÔs??cΪ°ë¾¶µÄÔ²ÖÜÉÏ¡£
ËùνÂ˲¨Æ÷µÄÁãµã¾ÍÊǽ«¸ÃµãµÄÖµ´úÈë´«µÝº¯Êýºó£¬´«µÝº¯ÊýµÄֵΪÁã¡£Ëùνº¯ÊýµÄ¼«µã¾ÍÊǽ«¸ÃµãµÄÖµ´úÈë´«µÝº¯Êýºó£¬´«µÝº¯ÊýµÄֵΪÎÞÇî´ó¡£Â˲¨Æ÷µÄÔöÒæÊÇÖ¸´«µÝº¯Êý±í´ïʽǰµÄϵÊý¡£ÈôϵͳµÄ´«µÝº¯Êý±íʾΪ£º
H?s??Z(s)K?s?z(1)??s?z(2)???s?z(nz)?? (17)
??????P(s)s?p(1)s?p(2)?s?p(np)ÔòÂ˲¨Æ÷ÁãµãΪ??z?1?,z?2?,?,z(nz)??£¬¼«µãΪ??p?1?,p?2?,?,p(np)??£¬Â˲¨Æ÷µÄÔöÒæÎªK¡£
ÕâÀïËù˵µÄÁãµãºÍ¼«µã·Ö²¼ÔÚÒ»¸öÔ²ÉÏΪLaplaceÓòÖеÄÐÎʽ£¬¸ÐÐËȤµÄͬѧ¿É²é¿´ÊýѧÖеÄLaplace±ä»»¡£
MATLABÐźŴ¦Àí¹¤¾ßÏäÌṩButterworthÄ£ÄâµÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æº¯Êýbuttap,º¯Êýµ÷ÓÃÐÎʽΪ£º
?z,p,k??buttap?n?
ʽÖУ¬nΪbutterworthÂ˲¨Æ÷½×Êý£»z,p,k·Ö±ðΪÂ˲¨Æ÷µÄÁãµã¡¢¼«µãºÍÔöÒæ¡£
ButterworthÂ˲¨Æ÷´«µÝº¯Êý¾ßÓÐÏÂÃæµÄÐÎʽ£º
wordÎĵµ ¿É×ÔÓɱà¼
H?s??Z(s)K £¨18£© ?P(s)?s?p(1)??s?p(2)???s?p(n)?Â˲¨Æ÷ûÓÐÁãµã£¬¼«µãΪ??p?1?,p?2?,?,p(n)??£¬Â˲¨Æ÷µÄÔöÒæÎªK¡£ ÔÚÓйØÄ£ÄâÂ˲¨Æ÷Éè¼ÆµÄMATLAB³ÌÐòÖУ¬¾³£Óöµ½Ò»Ð©Ìض¨º¯Êý¡£
?b,a??buttap£©Éè¼Æ³öµÄÁãµãz,¼«zp2tfk?z,p,?Ϊ½«Ä£ÄâÔÐÍÂ˲¨Æ÷º¯Êý£¨Èç
µãpºÍÔöÒækÐÎʽת»»Îª´«µÝº¯Êý£¨transfer function£©ÐÎʽ£»ÆäÖУ¬bΪÂ˲¨Æ÷´«µÝº¯Êý·Ö×Ó¶àÏîʽϵÊý£¬aΪÂ˲¨Æ÷´«µÝº¯Êý·Öĸ¶àÏîʽϵÊý¡£
?H,w??£¨·Ö×ӺͷÖĸ¶àÏîʽµÄϵÊýΪb,a£©±íʾfreqsw?b,a,?Çó³ö´«µÝº¯ÊýÐÎʽ
µÄÂ˲¨Æ÷µÄ¶ÔÓ¦ÓÚÆµÂʵãwµÄ¸´ÊýƵÂÊÏìÓ¦H£¨°üÀ¨Êµ²¿ºÍÐ鲿£©£¬ÕâÀïwΪһ
¸öʸÁ¿£¬±íʾ¶ÔÓ¦µÄ½ÇƵÂÊ¡£Èô¸Ãº¯Êý²»Ð´Êä³ö±äÁ¿£¬ÔòÖ´ÐÐºó»æ³ö¸ÃÂ˲¨Æ÷µÄ·ùƵÏìÓ¦ºÍÏàÆµÏìӦͼ¡£
ͼ9 ButterworthÂ˲¨Æ÷ÔÐÍÆ½·½·ùƵͼ
ÓÉͼ9Öª£¬ButterworthÂ˲¨Æ÷µÄ·ùƵƽ·½ÌØÐÔËæ×ÅÆµÂʵ¥µ÷Ͻµ¡£Ëæ×ÅÂ˲¨Æ÷½×ÊýµÄÔö´ó£¬Æä·ùÆµÌØÐÔÖð½¥½Ó½ü¾ØÐΡ£ 4.1.1 ButterworthÂ˲¨Æ÷Ó¦ÓÃ
Éè¼ÆÒ»¸öÄ£Äâ´øÍ¨Â˲¨Æ÷£¬ÎÒÃǽ«Éè¼ÆÖ¸±ê¸ÄΪ£ºÍ¨´øÆµÂÊ£º2000~3000Hz£¬Á½²à¹ý¶É´ø¿í500Hz£¬Í¨´ø²¨ÎÆ1dB£¬×è´øË¥¼õ100dB¡£¼ìÑéÐźÅ
x(t)?sin2?f1t?0.5cos2?f2t?0.5sin2?f3t£¬ÆäÖÐf1=100Hz£¬f2=2500Hz£¬f3=3900Hz¡£ÐźŵIJÉÑùƵÂÊΪ10000Hz¡£
³ÌÐòÈçÏ£º
wp=[2000 3000]*2*pi;ws=[1500 3500]*2*pi;Rp=1;Rs=100; %Â˲¨Æ÷Éè¼Æ²ÎÊý£¬¶ÔÓÚ¸ø¶¨HZÓ¦³ËÒÔ2?
[N,Wn]=buttord(wp,ws,Rp,Rs,'s'); %ÇóµÃÂ˲¨Æ÷µÄ×îС½×ÊýºÍ½ØÖ¹ÆµÂÊ
wordÎĵµ ¿É×ÔÓɱà¼
w=linspace(1,4000,1000)*2*pi; %ÉèÖûæÖÆÆµÂÊÏìÓ¦µÄƵÂʵã [b,a]=butter(N,Wn,'s'); %Éè¼ÆÄ£ÄâButterworthÂ˲¨Æ÷ H=freqs(b,a,w); %¼ÆËã¸ø¶¨ÆµÂʵãµÄ¸´ÊýƵÂÊÏìÓ¦
magH=abs(H);phaH=unwrap(angle(H)); %¼ÆËã·ùƵÏìÓ¦ºÍÏàÆµÏìÓ¦ plot(w/(2*pi),20*log10(magH)); %ÒÔÆµÂÊΪºá×ø±ê»æÖÆ·ùƵÏìÓ¦ xlabel('Frequency/Hz');ylabel('Magnitude/dB'); title('Butterworth analog bandpass filter'); hold on;
plot([1500 1500],ylim); plot([3500 3500],ylim); %»æÖÆ×è´ø±ß½ç grid on figure(2)
dt=1/10000; %Ä£ÄâÐźŲÉÑù¼ä¸ô
f1=100;f2=2500;f3=3900;%ÊäÈëÐźŵÄÈý¸öƵÂÊ³É·Ö t=0:dt:0.04; %¸ø¶¨Ä£Äâʱ¼ä¶Î
x=sin(2*pi*f1*t)+0.5*cos(2*pi*f2*t)+0.5*sin(2*pi*f3*t); %ÊäÈëÐźŠH=[tf(b,a)]; %Â˲¨Æ÷ÔÚMATLABϵͳÖеıíʾ [y,t1]=lsim(H,x,t); %Ä£ÄâÊä³ö
subplot(211),plot(t,x),title('Input signal') %»æ³öÊäÈëÐźŠsubplot(212),plot(t1,y) %»æÖÆÊä³öÐźŠtitle('Output signal'),xlabel('Time/s')
ͼ10 Ä£ÄâÂ˲¨Æ÷·ùƵÏìÓ¦£¬×è´ø±ß½ç
ÓÉͼ10¿É¼û£¬Â˲¨Æ÷µÄ·ùƵÏìÓ¦ÍêÈ«·ûºÏÒªÇó¡£ÔÚ×è´ø±ß½çȷʵϽµµ½100dB¡£3900HzºÍ100HzµÄƵÂʾùÔÚ×è´øÄÚ£¬Ö»ÓÐ25000HzµÄƵÂÊÔÚͨ´øÄÚ¡£
wordÎĵµ ¿É×ÔÓɱà¼
ͼ11 Â˲¨Æ÷µÄÊäÈëÐźźÍÊä³öÐźÅ
ÓÉͼ11¿É¼û£¬Í¨¹ýÄ£Äâϵͳºó£¬3900HzµÄ¸ßƵ³É·ÖºÍ100HzµÄµÍƵ³É·Ö±»Â˳ýÁË£¬Êä³öÖ»º¬ÓÐ2500HzƵÂʳɷֵÄÕñ¶¯¡£
4.2 ÇбÈÑ©·ò£¨chebyshev£©Â˲¨Æ÷
°ÍÌØÎÖ×ÈÂ˲¨Æ÷ÔÚͨ´øÄÚ·ù¶ÈÌØÐÔÊǵ¥µ÷ϽµµÄ£¬Èç¹û½×´ÎÒ»¶¨£¬ÔòÔÚ¿¿½ü½ØÖ¹?c´¦£¬·ù¶ÈϽµºÜ¶à£¬»òÕß˵£¬ÎªÁËʹͨ´øÄÚµÄË¥¼õ×㹻С£¬ÐèÒªµÄ½×´ÎNºÜ¸ß£¬ÎªÁ˿˷þÕâһȱµã£¬²ÉÓÃÇбÈÑ©·ò¶àÏîʽÀ´±Æ½üËùÏ£ÍûµÄ|H(j?)|2¡£ÇбÈÑ©·òÂ˲¨Æ÷µÄ|H(j?)|2ÔÚͨ´ø·¶Î§ÄÚÊǵȷùÆð·üµÄ£¬ËùÒÔÔÚͬÑùµÄͨ³£ÄÚË¥¼õÒªÇóÏ£¬Æä½×Êý½Ï°ÍÌØÎÖ×ÈÂ˲¨Æ÷ҪС¡£ 4.2.1 Chebyshev IÐÍ
Chebvshev IÐÍÄ£ÄâµÍͨÂ˲¨Æ÷µÄƽ·½·ùÖµÏìÓ¦º¯ÊýΪ£º H?j???A??2??212???1??2CN???c?? £¨19£©
ʽÖУ¬?ΪСÓÚ1µÄÕýÊý£¬±íʾͨ´øÄڵķùÖµ²¨ÎÆÇé¿ö£»?cΪ½ØÖ¹ÆµÂÊ£¬N
?ΪChebyshev¶àÏîʽ½×Êý£¬CN?????ΪChebyshev¶àÏîʽ£¬¶¨ÒåΪ£º
c???cosNcos?1?x?x?1 CN(x)?? £¨20£© ?1??coshNcoshxx?1?????Chebyshev IÐÍÂ˲¨Æ÷ÌØµãÊÇ£ºÍ¨´øÄÚ¾ßÓеȲ¨ÎÆÆð·üÌØÐÔ£¬¶øÔÚ×è´øÄÚÔò
wordÎĵµ ¿É×ÔÓɱà¼