ANDREW S. TANENBAUM Ã룬Լ 533 msec¡£ ------COMPUTER NETWORKS FOURTH EDITION PROBLEM SOLUTIONS 8. A collection of five routers is to be connected in a point-to-point subnet. Collected and Modified By YanZhenXing, Mail To:zxyan@ecnu.cn Between each pair of routers, the designers may put a high-speed line, a Classify: E¨¤Easy, M¨¤Middle, H¨¤Hard£¬D¨¤Delete Green: Important Red: Master Blue: VI Others:Know Grey: Unnecessary Chapter 1 IntroductionProblems 2. An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two advantages of a client-server system using a LAN.(M) ʹÓþÖÓòÍøÄ£ÐÍ¿ÉÒÔÈÝÒ×µØÔö¼Ó½Úµã¡£ Èç¹û¾ÖÓòÍøÖ»ÊÇÒ»Ìõ³¤µÄµçÀ£¬ÇÒ²»»áÒò¸ö±ðµÄʧЧ¶ø±ÀÀ£( ·þÎñ Æ÷)µÄÇé¿öÏ£¬Ê¹ÓþÖÓòÍøÄ£ÐÍ»á¸ü±ãÒË¡£ ʹÓþÖÓòÍø¿ÉÌṩ¸ü¶àµÄ¼ÆËãÄÜÁ¦ºÍ¸üºÃ½»»¥Ê½½Ó¿Ú¡£ 3. The performance of a client-server system is influenced by two network factors: the bandwidth of the network (how many bits/sec it can transport) and the latency (how many seconds it takes for the first bit to get from the client to the server). Give an example of a network that exhibits high bandwidth and high latency. Then give an example of one with low bandwidth and low latency.(E) ºá¹á´ó½µÄ¹âÏËÁ¬½Ó¿ÉÒÔÓкܶàǧÕ×λ/Ãë´ø¿í£¬ µ«ÊÇÓÉÓÚ¹âËÙ¶È´«ËÍÒªÔ½¹ýÊý ǧ¹«ÀʱÑÓ½«Ò²¸ß¡£ Ïà·´£¬Ê¹Óà 56 kbps µ÷ÖÆ½âµ÷Æ÷ºô½ÐÔÚͬһ´óÂ¥ÄڵļÆËã»úÔòÓеʹø¿íºÍ½ÏµÍµÄ ʱÑÓ¡£ 4. Besides bandwidth and latency, what other parameter is needed to give a good characterization of the quality of service offered by a network used for digitized voice traffic?(M) ÉùÒôµÄ´«ÊäÐèÒªÏàÓ¦µÄ¹Ì¶¨Ê±¼ä£¬Òò´ËÍøÂçʱ϶ÊýÁ¿ÊǺÜÖØÒªµÄ¡£´«Êäʱ¼ä¿ÉÒÔ Óñê׼ƫ²î·½Ê½±íʾ¡£Êµ¼ÊÉÏ£¬¶ÌÑÓ³Ùµ«ÊÇ´ó±ä»¯ÐԱȸü³¤µÄÑӳٺ͵ͱ仯ÐÔ¸üÔã¡£ 6. A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the best-case delay in response to a request?(E) ÓÉÓÚÇëÇóºÍÓ¦´ð¶¼±ØÐëͨ¹ýÎÀÐÇ£¬Òò´Ë´«Êä×Ü·¾¶³¤¶ÈΪ 160,000 ǧÃס£ÔÚ¿ÕÆø ºÍÕæ¿ÕÖеĹâËÙΪ 300£¬000 ¹«Àï/Ã룬 Òò´Ë×î¼ÑµÄ´«²¥ÑÓ³ÙΪ 160,000/300£¬000
ÀýÈç²ÉÓþµÏñmedium-speed line, a low-speed line, or no line. If it takes 100 ms of computer time 13. What is the principal difference between connectionless communication and to generate and inspect each topology, how long will it take to inspect all of
connection-oriented communication?(E)
them?(E)
½«Â·ÓÉÆ÷³ÆÎª A£¬B£¬C£¬D ºÍ E. ÔòÓÐ 10 Ìõ¿ÉÄܵÄÏß·£»AB, AC, AD, AE, BC, BD, BE, CD, CE,ºÍ DE ÿÌõÏß·ÓÐ 4 410 = 1,048,576¡£
¼ì²éÿ¸öÍØÆËÐèÒª 100 ms£¬È«²¿¼ì²é×ܹ²ÐèÒª 104,857. 6 Ã룬»òÕßÉÔ΢³¬¹ý 29 ¸öСʱ¡£
9. A group of 2n - 1 routers are interconnected in a centralized binary tree, with a router at each tree node. Router i communicates with router j by sending a message to the root of the tree. The root then sends the message back down to j. Derive an approximate expression for the mean number of hops per message for large n, assuming that all router pairs are equally likely.(H)
ÕâÒâζ×Å£¬´Ó·ÓÉÆ÷µ½Â·ÓÉÆ÷µÄ·¾¶³¤¶ÈÏ൱ÓÚ·ÓÉÆ÷µ½¸ùµÄÁ½±¶¡£ ÈôÔÚÊ÷ÖУ¬
¸ùÉî¶ÈΪ 1£¬Éî¶ÈΪ n£¬´Ó¸ùµ½µÚ n ²ãÐèÒª n-1 Ìø£¬ÔڸòãµÄ·ÓÉÆ÷Ϊ 0.50¡£ ´Ó¸ùµ½ n-1 ²ãµÄ·¾¶ÓÐ router µÄ 0.25 ºÍ n--2 Ìø²½¡£ Ϊ£º
l = 0.5*(n-1)+0.25*(n-2)+0.125*(n-3)¡¡ ½á¹û»¯¼òΪ l£½n£2£¬Æ½¾ù·ÓÉ·¾¶Îª 2n-4¡£
10. A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the channel at the same time. As a simplistic example,
suppose that time is divided into discrete slots, with each of the n hosts attempting to use the channel with probability p during each slot. What fraction of the slots are wasted due to collisions?(H) Çø·Ö n-2 ʼþ¡£ ʼþ 1 µ½ n ÓÉÖ÷»ú³É¹¦µØ¡¢Ã»ÓгåÍ»µØÊ¹ÓÃÕâÌõÐŵÀµÄʼþ×é ³É¡£ ÕâЩ¿ÉÄÜÐÔµÄʼþµÄ¸ÅÂÊΪ p(1£p)n-1¡£Ê¼þ n+1 ÊÇÒ»¸ö¿ÕÏеÄÐŵÀ£¬Æä¸ÅÂÊ Îª(1- p)n¡£Ê¼þ n+2 ÊÇÒ»¸ö³åÍ»¡£ÓÉÓÚʼþ n+2 »¥³â£¬ËüÃÇ¿ÉÄÜ·¢ÉúµÄʼþ±ØÐëͳ
Ò»ºÏ¼Æ¡£ ³åÍ»µÄ¿ÉÄÜÐÔµÈÓÚÄÇЩС²¿·ÖµÄ²ÛµÄÀË·Ñ£¬Ö»ÊÇ 1£ np(1£p)n-1£ (1£p)n
11. What are two reasons for using layered protocols?(M) ͨ¹ýÐÒé·Ö²ã¿ÉÒÔ°ÑÉè¼ÆÎÊÌâ»®·Ö³É½ÏСµÄÒ×ÓÚ´¦ÀíµÄƬ¶Î ·Ö²ãÒâζ×Åijһ²ãµÄÐÒéµÄ¸Ä±ä²»»áÓ°Ïì¸ß²ã»òµÍ²ãµÄÐÒé
Òò´Ë£¬Â·¾¶³¤¶È l
ÖÖ¿ÉÄÜÐÔ(3
ËÙ¶È»òÕß²»ÊÇÏß·)£¬ÍØÆËµÄ×ÜÊýΪ
Á¬½ÓµÄÇëÇó¡£µÚ¶þ½×¶Î£¬Ö»ÓÐÔÚÁ¬½Ó³É¹¦½¨Á¢Ö®ºó£¬±£³ÖÁ¬½Ó״̬£¬²ÅÄÜ¿ªÊ¼Êý¾Ý
Ö÷ÒªµÄÇø±ðÓÐÁ½Ìõ¡£ 17. In some networks, the data link layer handles transmission errors by
ÆäÒ»£ºÃæÏòÁ¬½ÓͨÐÅ·ÖΪÈý¸ö½×¶Î£¬µÚÒ»Êǽ¨Á¢Á¬½Ó£¬Ôڴ˽׶Σ¬·¢³öÒ»¸ö½¨Á¢ requesting damaged frames to be retransmitted. If the probability of a frame's being
´«Êä¡£µÚÈý½×¶Î£¬µ±Êý¾Ý´«ÊäÍê±Ï£¬±ØÐëÊÍ·ÅÁ¬½Ó¡£¶øÎÞÁ¬½ÓͨÐÅûÓÐÕâô¶à½×¶Î£¬
ËüÖ±½Ó½øÐÐÊý¾Ý´«Êä¡£ Æä¶þ£ºÃæÏòÁ¬½ÓµÄͨОßÓÐÊý¾ÝµÄ±£ÐòÐÔ£¬ ¶øÎÞÁ¬½ÓµÄͨÐŲ»Äܱ£Ö¤½ÓÊÕÊý¾ÝµÄ
˳ÐòÓë·¢ËÍÊý¾ÝµÄ˳ÐòÒ»Ö¡£ 14. Two networks each provide reliable connection-oriented service. One of them offers a reliable byte stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction made? If not, give an example of how they differ.(E)
²»Ïàͬ¡£ÔÚ±¨ÎÄÁ÷ÖУ¬ÍøÂç±£³Ö¶Ô±¨Îı߽çµÄ¸ú×Ù£»¶øÔÚ×Ö½ÚÁ÷ÖУ¬ÍøÂç²»×öÕâ ÑùµÄ¸ú×Ù¡£ÀýÈ磬һ¸ö½ø³ÌÏòÒ»ÌõÁ¬½ÓдÁË 1024 ×Ö½Ú£¬ÉÔºóÓÖдÁËÁíÍâ 1024 ×Ö½Ú¡£ ÄÇô½ÓÊÕ·½¹²¶ÁÁË 2048 ×Ö½Ú¡£¶ÔÓÚ±¨ÎÄÁ÷£¬½ÓÊÜ·½½«µÃµ½Á½¸ö±¨ÎÄ¡£Ã¿¸ö±¨ÎÄ 1024
×Ö½Ú¡£ ¶ø¶ÔÓÚ×Ö½ÚÁ÷£¬±¨Îı߽粻±»Ê¶±ð¡£½ÓÊÕ·½°ÑÈ«²¿µÄ 2048 ¸ö×Ö½Úµ±×÷Ò»¸ö
ÕûÌ壬ÔÚ´ËÒѾÌåÏÖ²»³öÔÏÈÓÐÁ½¸ö±¨ÎĵÄÊÂʵ¡£ 15. What does ''negotiation'' mean when discussing network protocols? Give an example.(E)
ÐÉ̾ÍÊÇÒªÈÃË«·½¾ÍÔÚͨÐÅÆÚ¼ä½«Ê¹ÓõÄijЩ²ÎÊý»òÊýÖµ´ï³ÉÒ»Ö¡£×î´ó·Ö×鳤 ¶È¾ÍÊÇÒ»¸öÀý×Ó¡£
16. In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why not?(E)
·þÎñÊÇÓÉ k ²ãÏò k£«1 ²ãÌṩµÄ¡£
·þÎñ±ØÐëÓÉϲã k Ìṩ£¬¼´£¬¶Ô²ã k µÄ·þÎñÊÇÓÉ k- 1 ²ãÌṩµÄ¡£
damaged is p, what is the mean number of transmissions required to send a frame? 21. List two ways in which the OSI reference model and the TCP/IP reference Assume that acknowledgements are never lost.(M) model are the same. Now list two ways in which they differ.£¨M£©
k-1
¼ÙÉèij֡´«µ½µÚ k ´Î²Å´«Êä³É¹¦£¬Æð³õ k-1 ´Î´«Êä½Ô³¢ÊÔʧ°Ü£¬¸ÅÂÊΪ p ,ÏàËÆµã£º¶¼ÊǶÀÁ¢µÄÐÒéÕ»µÄ¸ÅÄ²ãµÄ¹¦ÄÜÒ²´óÌåÏàËÆ¡£ µÚ k
²»Í¬µã£ºOSI ¸üºÃµÄÇø·ÖÁË·þÎñ¡¢½Ó¿ÚºÍÐÒéµÄ¸ÅÄÒò´Ë±È TCP/IP ¾ßÓиüºÃ
´Î´«Êä³É¹¦£¬¸ÅÂÊΪ(1-p) £¬Ôò·¢ËÍÒ»Ö¡³É¹¦µÄƽ¾ù´«Êä´ÎÊýΪ£º
µÄ
Òþ²ØÐÔ£¬Äܹ»±È½ÏÈÝÒ׵ĽøÐÐÌæ»»£»OSI ÊÇÏÈÓеÄÄ£Ð͵ĸÅÄȻºóÔÙ½øÐÐÐÒéµÄ
ʵÏÖ£¬¶ø TCP/IP ÊÇÏÈÓÐÐÒ飬Ȼºó½¨Á¢ÃèÊö¸ÃÐÒéµÄÄ£ÐÍ£»²ã´ÎÊýÁ¿Óвî±ð£»
1. Which of the OSI layers handles each of the following: TCP/IP a. (a) Dividing the transmitted bit stream into frames. ûÓлỰ²ãºÍ±íʾ²ã£¬OSI ²»Ö§³ÖÍøÂ绥Á¬¡£OSI ÔÚÍøÂç²ãÖ§³ÖÎÞÁ¬½ÓºÍÃæÏòÁ¬½Ó
µÄͨÐÅ£¬¶øÔÚ´«Êä²ã½öÓÐÃæÏòÁ¬½ÓµÄͨÐÅ£¬¶ø TCP/IP ÔÚÍøÂç²ã½öÓÐÒ»ÖÖͨÐÅģʽb. (b) Determining which route through the subnet to use.£¨E£©
£¨ÎÞ °Ñ´«ÊäµÄ±ÈÌØÁ÷»®·ÖΪ֡¡ª¡ªÊý¾ÝÁ´Â·²ã
Á¬½Ó£©£¬µ«ÔÚ´«Êä²ãÖ§³ÖÁ½ÖÖģʽ¡£
¾ö¶¨Ê¹ÓÃÄÄÌõ·¾¶Í¨¹ý×ÓÍø¡ª¡ªÍøÂç²ã.
22. What is the main difference between TCP and UDP?£¨E£©
19. If the unit exchanged at the data link level is called a frame and the unit
TCP ÊÇÃæÏòÁ¬½ÓµÄ£¬¶ø UDP ÊÇÒ»ÖÖÊý¾Ý±¨·þÎñ¡£ exchanged at the network level is called a packet, do frames encapsulate packets or
25. When a file is transferred between two computers, two acknowledgement do packets encapsulate frames? Explain your answer.£¨E£©
Ö¡·â×°°ü¡£ µ±Ò»¸ö°üµ½´ïÊý¾ÝÁ´Â·²ãʱ£¬Õû¸öÊý¾Ý°ü£¬°üÀ¨°üÍ·¡¢Êý¾Ý¼°È«²¿strategies are possible. In the first one, the file is chopped up into packets, which are
individually acknowledged by the receiver, but the file transfer as a whole is not ÄÚ
acknowledged. In the second one, the packets are not acknowledged individually,
ÈÝ£¬¶¼ÓÃ×÷Ö¡µÄÊý¾ÝÇø¡£»òÕß˵£¬½«Õû¸ö°ü·Å½øÒ»¸öÐÅ·â(Ö¡)ÀïÃæ£¬( Èç¹ûÄÜ
but the entire file is acknowledged when it arrives. Discuss these two approaches.
×°ÈëµÄ
£¨E£©
»°)¡£
- 2 -
Èç¹ûÍøÂçÈÝÒ×¶ªÊ§·Ö×飬ÄÇô¶Ôÿһ¸ö·Ö×éÖðÒ»½øÐÐÈ·ÈϽϺ㬴Ëʱ½öÖØ´«ÒòΪ ¶ªÊ§ Ðí¶àÎÞÏßÉ豸ÐèÒªÒÆ¶¯£¬µç³ØÊ¹ÓÃÊÙÃü²»³¤Ò²ÊÇÆäȱµãÖ®Ò»¡£
µÄ·Ö×é¡£
Chapter 2 The Physical Problems Èç¹ûÍøÂç¸ß¶È¿É¿¿£¬ÄÇôÔÚ²»·¢²î´íµÄÇé¿öÏ£¬½öÔÚÕû¸öÎļþ´«Ë͵Ľáβ·¢ËÍÒ»
´ÎÈ·ÈÏ£¬´Ó¶ø¼õÉÙÁËÈ·ÈϵĴÎÊý£¬½ÚÊ¡ÁË´ø¿í£»²»¹ý£¬¼´Ê¹Óе¥¸ö·Ö×鶪ʧ£¬Ò²Ðè ÒªÖØ´«Õû¸öÎļþ¡£ 26. Why does ATM use small, fixed-length cells?£¨E£© ÒòΪÕâÑù¿ÉÒÔѸËٵؾÓɽ»»»»úת·¢£¬²¢ÇÒÕâÊÇÔÚÓ²¼þÉÏÍê³ÉµÄ¡£ÕâÑùµÄÉè¼ÆÊ¹ 2. A noiseless 4-kHz channel is sampled every 1 msec. What is the maximum data rate?£¨E£© µÃÖÆÔì¿ÉÒÔͬʱ²¢Ðд¦Àí¶à¸ö CELLS µÄÓ²¼þÉ豸¸ü¼ÓÈÝÒס£ÁíÍ⣬ËüÃDz»»á×è° ´«ÊäÏß·ºÜ¾Ã£¬¸ü¼ÓÈÝÒ×±£Ö¤Ìṩ³ö¸ßÖÊÁ¿µÄ·þÎñ¡£ 28. An image is 1024 x 768 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet?(E) ¸ÃͼÏñ´óСΪ 1024 * 768 * 3 * 8 = 18,874,368 bits. ´«ÊäËÙÂÊΪ 56Kbits/sec£¬ÐèÒª 18,874,368 / 56,000 = 337.042 sec. ´«ÊäËÙÂÊΪ 1Mbits/sec£¬ ÐèÒª 18,874,368 / 106 = 18.874 sec. ´«ÊäËÙÂÊΪ 10Mbits/sec£¬ÐèÒª 18,874,368 / 107 = 1.887 sec. ´«ÊäËÙÂÊΪ 100Mbits/sec£¬ÐèÒª 18,874,368 / 108 = 0.189 sec. 29. Ethernet and wireless networks have some similarities and some differences. One property of Ethernet is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with Ethernet? Discuss your answer.(E) ÏëÏóÒ»ÏÂÒþ²ØÖն˵ÄÎÊÌâ¡£¼ÙÉèÒ»¸öÎÞÏßÍøÂçÀïÓÐÎą̊ÖÕ¶Ë£¬´Ó A ÖÁ E£¬Ê¹ËüÃÇ Ã¿Ò»Ì¨¶¼Ö»¿ÉÒÔÁªÏµµ½ÓëÆäÏàÁÚµÄÁ½¸öÁÚ¾ÓÖ®Ò»£¬ÄÇô A ÔÚÓë B ͨѶµÄͬʱ D ¿É ÒÔÓë E ½øÐÐͨѶ¡£Òò´ËÎÞÏßÍøÂçÓÐDZÔڵIJ¢ÐÐÐÔ£¬ÕâÓëÒÔÌ«ÍøÉϲ»Í¬µÄ¡£ 30. Wireless networks are easy to install, which makes them inexpensive since installation costs usually far overshadow equipment costs. Nevertheless, they also have some disadvantages. Name two of them.£¨E£©
ÎÞÏßÍøÂçµÄȱµã£ºÒ»Êǰ²È«ÐÔ£¬Å¼È»³öÏÖÔÚÎÞÏßÍøÂçÄÚµÄÈ˶¼ÄܼàÌýµ½ÍøÂçÉÏ´«
µÝµÄÏûÏ¢£»ÔÙÓоÍÊǿɿ¿ÐÔ£¬ÎÞÏßÍøÂçÔÚ´«Êä¹ý³ÌÖлá³öÏֺܶà´íÎó£»ÁíÍ⣬
ÓÉÄá¿üË¹ÌØ¶¨Àí£¬ÎÞÔëÉùÐŵÀ×î´óÊý¾Ý´«ÊäÂÊ=2Hlog2V b/s¡£ÒÀÌâÓдø¿í H =
4kHz£¬Òò´Ë×î´óÊý¾Ý´«ÊäÂʾö¶¨ÓÚÿ´Î²ÉÑùËù²úÉúµÄ±ÈÌØÊý£¨log2V£©¡£ Èç¹ûÿ´Î²ÉÑù²úÉú 16bits£¬ÄÇôÊý¾Ý´«ÊäÂʿɴï 128kbps£» Èç¹ûÿ´Î²ÉÑù²úÉú 1024bits£¬ÄÇô¿É´ï 8.2Mbps¡£
3. Television channels are 6 MHz wide. How many bits/sec can be sent if four-level digital signals are used? Assume a noiseless channel.£¨E£© ÒÀÌâÓдø¿í H = 6MHz£¬Ã¿´Î²ÉÑù log2V = 2bit
ÓÉÄá¿üË¹ÌØ¶¨Àí£¬¿É·¢Ë͵Ä×î´óÊý¾Ý´«ÊäÂÊΪ 2Hlog2V = 24Mbps¡£ 4. If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio
- 3 - is 20
dB, what is the maximum achievable data rate?£¨M£©
ÓÉÏãÅ©¶¨ÀíÐŵÀ±ÈΪ S/N µÄÓÐÔëÉùÐŵÀµÄ×î´óÊý¾Ý´«ÊäÂÊ = Hlog2(1+S/N)¡£
ÒÀÌâÖª´ø¿í H = 3kHz£¬ÐÅÔë±ÈΪ 10lgS/N = 20 dB£¬Öª S/N =100 ÓÉÓÚ log2101¡Ö6.658£¬¸ÃÐŵÀµÄÐŵÀÈÝÁ¿Îª 3log2(1+100)=19.98kbps ÔÙ¸ù¾ÝÄá¿üË¹ÌØ¶¨Àí£¬·¢ËͶþ½øÖÆÐÅºÅµÄ 3kHz ÐŵÀµÄ×î´óÊý¾Ý´«
ÊäËÙÂÊΪ
2Hlog2V = 2*3 log22 = 6kbps ×ÛÉÏ£¬¿ÉÒÔÈ¡µÃµÄ×î´óÊý¾Ý´«ÊäËÙÂÊΪ 6kbps¡£
5. What signal-to-noise ratio is needed to put a T1 carrier on a 50-kHz line?£¨M£©
T1 ÐźŵĴø¿í = 1.544 * 106Hz£¬Îª·¢ËÍ T1 Ðźţ¬ÓÉÏãÅ©¶¨Àí£¬×î´óÊý¾Ý´«ÊäÂÊ
= Hlog62(1+S/N) = 1.544 * 10Hz £¬ÒÀÌâÖª´ø¿í H = 50 kHz£¬½âµÃ S/N = 231¨C1 ÔÙÓÉÄá¿üË¹ÌØ¶¨Àí 2Hlog2V = 2Hlog2S/N = 93 dB ËùÒÔ£¬ÔÚ 50kHz Ïß·ÉÏʹÓà T1 ÔØ²¨ÐèÒª 93dB µÄÐÅ
Ôë±È¡£
7. How much bandwidth is there in 0.1 micron of spectrum at a wavelength of 1
micron?(M)
ÒÀÌâ֪Ƶ¶ÎΪ 0.1 £¬²¨³¤Îª 1
Òò´Ë£¬ÔÚ 0.1 µÄƵ¶ÎÖпÉÒÔÓÐ 30THz¡£
12. Multipath fading is maximized when the two beams arrive 180 degrees out of
The screen is 480 x 640 pixels, each pixel being 24 bits. There are 60 screen images phase. How much of a path difference is required to maximize the fading for a per second. How much bandwidth is needed, and how many microns of wavelength 50-km-long 1-GHz microwave link?£¨E£© are needed for this band at 1.30 microns?£¨M£© Óɹ«Ê½ £¬ÕâÀï¹âËÙ c =300000km/s£¬ÒÀÌâ f=1GHz£¬ËùÒÔ΢²¨µÄ²¨³¤ÊÇ ´«ÊäÊý¾ÝµÄËÙÂÊΪ 480¡Á\‘@2X640¡Á24¡Á\‘@2X60bps£¬¼´ 442Mbps¡£
8. It is desired to send a sequence of computer screen images over an optical fiber.
30cm¡£ Èç¹ûÒ»¸ö²¨±ÈÁíÒ»¸ö²¨¶àÐнø 15cm£¬ÄÇôËüÃǵ½´ïʱ½« 180 ÒìÏà¡£ÏÔÈ»£¬´ð°¸ÓëÁ´ ·³¤¶ÈÊÇ 50km µÄÊÂʵÎ޹ء£ 18. A simple telephone system consists of two end offices and a single toll office to which each end office is connected by a 1-MHz full-duplex trunk. The average telephone is used to make four calls per 8-hour workday. The mean call duration is 6 min. Ten percent of the calls are long-distance (i.e., pass through the toll office). What is the maximum number of telephones an end office can support? (Assume 4 kHz per circuit.)£¨E£© ÐèÒª 442Mbps µÄ´ø¿í£¬¶ÔÓ¦µÄ²¨³¤·¶Î§ÊÇ ¡£ 9. Is the Nyquist theorem true for optical fiber or only for copper wire?£¨D£© Äá¿üË¹ÌØ¶¨ÀíÊÇÒ»¸öÊýѧÐÔÖÊ£¬²»Éæ¼°¼¼Êõ´¦Àí¡£¸Ã¶¨Àí˵£¬Èç¹ûÄãÓÐÒ»¸öº¯Ã¿²¿µç»°Ã¿Ð¡Ê±×ö 0.5 ´Îͨ»°£¬Ã¿´Îͨ»° 6 ·ÖÖÓ¡£Òò´ËÒ»²¿Êý£¬
µç»°Ã¿Ð¡Ê±Õ¼ÓÃÒ»Ìõ ËüµÄ¸µÁ¢Ò¶ÆµÆ×²»°üº¬¸ßÓÚ f µÄÕýÏÒºÍÓàÏÒ£¬ÄÇôÒÔ 2 fµç· 3 ·ÖÖÓ£¬60/3=20£¬¼´ 20 ²¿µç»°¿É¹²ÏíÒ»ÌõÏß·¡£ÓÉÓÚÖ»ÓÐ 10%µÄºô½ÐÊdz¤ µÄƵÂʲÉÑù¸Ãº¯Êý£¬ÄÇô ;£¬ Äã¾Í¿ÉÒÔ»ñÈ¡¸Ãº¯ÊýËù°üº¬µÄÈ«²¿ÐÅÏ¢¡£Òò´ËÄá¿üË¹ÌØ¶¨ÀíÊÊÓÃÓÚËùÓнéÖÊ¡£ ËùÒÔ 200 ²¿µç»°Õ¼ÓÃÒ»ÌõÍêȫʱ¼äµÄ³¤Í¾Ïß·¡£¾Ö¼ä¸ÉÏ߸´ÓÃÁË 1000000/4000=250 10. In Fig. 2-6 the lefthand band is narrower than the others. Why?£¨E£© ÌõÏß·£¬Ã¿ÌõÏß·֧³Ö 200 ²¿µç»°£¬Òò´Ë£¬Ò»¸ö¶Ë¾Ö¿ÉÒÔÖ§³ÖµÄµç»°²¿ÊýΪ 200*250=50000¡£. 21. The cost of a fast microprocessor has dropped to the point where it is now possible to put one in each modem. How does that affect the handling of telephone line errors?£¨E£© ͨ³£ÔÚÎïÀí²ã¶ÔÓÚÔÚÏß·ÉÏ·¢Ë͵ıÈÌØ²»²ÉÈ¡Èκβî´í¾ÀÕý´ëÊ©¡£ÔÚÿ¸öµ÷ÖÆ½â µ÷Æ÷Öж¼°üÀ¨Ò»¸ö CPU ʹµÃÓпÉÄÜÔÚµÚÒ»²ãÖаüº¬´íÎó¾ÀÕýÂ룬´Ó¶ø´ó´ó¼õÉÙµÚ ¶þ²ãËù¿´µ½µÄ´íÎóÂÊ¡£Óɵ÷ÖÆ½âµ÷Æ÷×öµÄ´íÎó´¦Àí¿ÉÒÔ¶ÔµÚ¶þ²ãÍêȫ͸Ã÷¡£ÏÖÔÚÐí ¶àµ÷ÖÆ½âµ÷Æ÷¶¼ÓÐÄÚ½¨µÄ´íÎó´¦Àí¹¦ÄÜ¡£ 22. A modem constellation diagram similar to Fig. 2-25 has data points at the following coordinates: (1, 1), (1, -1), (-1, 1), and (-1, -1). How many bps can a modem µÃС£¬²ÅÄܱ£³Ö¨Sf ´óÔ¼ÏàµÈ¡£
with these parameters achieve at 1200 baud?£¨E£©
˳±ãÖ¸³ö£¬3 ¸ö´ø¿í´óÖÂÏàͬµÄÊÂʵÊÇËùʹÓõĹèµÄÖÖÀàµÄÒ»¸öÅöÇɵÄÌØÐÔ·´Ó³¡£
11. Radio antennas often work best when the diameter of the antenna is equal to
the wavelength of the radio wave. Reasonable antennas range from 1 cm to 5 meters
in diameter. What frequency range does this cover?£¨E£© ÓÉÓÚÕâ 3 ¸ö²¨¶ÎµÄƵÂÊ·¶Î§´óÌåÉÏÏàµÈ£¬¸ù¾Ý¹«Ê½ £¬ СµÄ²¨¶Î¨S Ò²
- 4 -
ÿ¸ö²¨ÌØÓÐ 4 ¸öºÏ·¨Öµ£¬Òò´Ë±ÈÌØÂÊÊDz¨ÌØÂʵÄÁ½±¶¡£
¶ÔÓ¦ÓÚ 1200 ²¨ÌØ£¬Êý¾ÝËÙÂÊÊÇ 2400bps¡£ Mbps
23. A modem constellation diagram similar to Fig. 2-25 has data points at (0, 1) µÄÐŵÀ¶øÑÔÏÂÔØÊ±¼äÊÇ 1.1msec£¬ÒÀÌâÆ½¾ùÅŶÓÑÓ³Ùʱ¼äÒ²ÊÇ 1.1msec£¬Ôò×ÜÏÂÔØÊ± and (0, 2). Does the modem use phase modulation or amplitude modulation?£¨E£© ¼äÊÇ 2.2msec£¬¶Ô ADSL ¶øÑÔ²¢Ã»ÓÐÅŶÓÑÓ³Ùʱ¼ä£¬ËùÒÔ 1 Mbps µÄÏÂÔØÊ±¼äÊÇ
40 Ïàλ×ÜÊÇ 0£¬µ«Ê¹ÓÃÁ½¸öÕñ·ù£¬Òò´ËÕâÊÇÖ±½ÓµÄ·ù¶Èµ÷ÖÆ¡£ 24. In a constellation diagram, all the points lie on a circle centered on the origin. What kind of modulation is being used?£¨E£© Èç¹ûËùÓеĵ㶼ÔÚͬһԲÖÜÉÏ£¬ÄÇôËüÃÇÓÐ×ÅͬÑùµÄ·ù¶È£¬ËùÒÔûÓÐʹÓ÷ù¶Èµ÷ ÖÆ¡£ÔÚÐÇ×ùͼÖдÓÀ´¾Í²»Ê¹ÓÃÆµÂʵ÷ÖÆ£¬ËùÒÔ£¬ÕâÀïËù²ÉÓõıàÂëÊÇ´¿Ïàλµ÷ÖÆ¡£ 25. How many frequencies does a full-duplex QAM-64 modem use?£¨E£© ȫ˫¹¤µÄ QAM-64 ʹÓÃÁËÁ½¸öƵÂÊ¡£Ò»¸ö¸øÉÏÐÐÁ÷£¬Ò»¸ö¸øÏÂÐÐÁ÷¡£µ÷ÖÆ»úÖÆ±¾ ÉíֻʹÓÃÁËÏàλºÍ·ù¶Èµ÷ÖÆ£¬ÕâÀï¶ÔƵÂʲ»×öµ÷ÖÆ¡£ 26. An ADSL system using DMT allocates 3/4 of the available data channels to the downstream link. It uses QAM-64 modulation on each channel. What is the capacity of the downstream link?£¨M£© DMT Ö¸ÀëÉ¢µÄ¶àÐŵÀµ÷ÖÆ¡£ÕâÀï×ܹ²ÓÐ 256 ÌõÐŵÀ£¬¼õÈ¥ 6 Ìõ¸ø POTS ÒÔ¼°ÔÙ¼õ ÉÙ 2 ÌõÓÃÓÚ¿ØÖÆ£¬ÓàÏ嵀 248 ÌõÁô¸øÊý¾Ý¡£ÒÀÌâÆäÖÐµÄ 3/4 ¼´ 186 ÌõÐŵÀ¸øÏÂÐÐÁ÷¡£ ADSL ÊÇÒÔ 4000 baud/s ½øÐе÷Öá£ËùÒÔ¶Ô QAM-64£¨6 bits/baud£©¿ÉµÃÿÌõÐŵÀ µÄ´ø¿íΪ 24,000 bps ËùÒÔÏÂÐÐÁ÷×ܵĴø¿íΪ 24,000 bps*186=4.464 Mbps 27. In the four-sector LMDS example of Fig. 2-30, each sector has its own 36-Mbps channel. According to queueing theory, if the channel is 50% loaded, the queueing time will be equal to the download time. Under these conditions, how long does it take to download a 5-KB Web page? How long does it take to download the page over a 1-Mbps ADSL line? Over a 56-kbps modem?£¨E£©
LMDS Ö¸±¾µØ¶àµã·Ö·¢·þÎñ¡£Ò»¸ö 5-KB µÄÍøÒ³Êý¾ÝÁ¿Îª 40,000 bits£¬¶ÔÓÚ 36
msec£¬ÔÚ 56 kbps µÄÌõ¼þÏÂÏÂÔØÊ±¼äÊÇ 714 msec.
28. Ten signals, each requiring 4000 Hz, are multiplexed on to a single channel using FDM. How much minimum bandwidth is required for the multiplexed channel? Assume that the guard bands are 400 Hz wide.£¨E£© ¶ÔÓÚ 10 ¸ö 4000 Hz ¸ÉÈÅ¡£
ËùÐèÒªµÄ×îС´ø¿íΪ 4000 * 10 + 400 * 9 = 43,600 Hz
µÄÐźţ¬ÎÒÃÇÐèҪʹÓà 9 ¸ö·À»¤Æµ¶ÎÀ´±ÜÃâ¿ÉÄܵÄ
b. (b) The T1 PCM system.£¨E£©
Á½ÖÖÇé¿öϾùΪ 8000 ´Î²ÉÑù/Ã롣ʹÓà 2 ½øÖƱàÂ룬Ôò¶Ô a ÿ´Î²ÉÑùÖз¢ËÍ 2 λ
Êý¾Ý£¬¶Ô T1 Ïß·£¬Ã¿´Î²ÉÑù·¢ËÍ 7 λÊý¾Ý¡£ËùÒÔÏà¶ÔµÄ×î´óÊý¾Ý´«ÊäÂÊΪ£º (a) ÿ´Î²ÉÑù 2 ±ÈÌØµÄÄ£Äâ±àÂë 2Hlog2V = 16 kbps (b) T1 PCM ϵͳ 2Hlog2V = 56 kbps
32. If a T1 carrier system slips and loses track of where it is, it tries to
29. Why has the PCM sampling time been set at 125 ¦Ìsec?£¨E£©
resynchronize using the 1st bit in each frame. How many frames will have to be
125 µÄ²ÉÑùʱ¼ä¶ÔÓ¦ÓÚÿÃë 8000 ´Î²ÉÑù¡£Ò»¸öµäÐ͵ĵ绰ͨµÀΪ 4kHz¡£¸ù¾Ýinspected on average to resynchronize with a probability of 0.001 of being wrong? Äá £¨M£© ¿üË¹ÌØ¶¨Àí£¬Îª»ñȡһ¸ö 4kHz µÄͨµÀÖеÄÈ«²¿ÐÅ10 ¸öÖ¡¡£ ÔÚÊý×ÖͨµÀÉÏÄ³Ð©Ëæ»ú±ÈÌØÊÇ 0101010101 ģʽµÄ¸ÅÂÊÊÇ 1/1024¡£Ï¢ÐèҪÿÃë 8000 ´ÎµÄ²ÉÑùƵÂÊ¡£ ²ì 30. What is the percent overhead on a T1 carrier; that is, what percent of the 1.544 Mbps are not delivered to the end user?£¨M£©
T1 Ïß·µÄÿһ֡ÖУ¬¶ËµãÓû§Ê¹Óà 193 λÖÐµÄ 168£¨7*24£©Î»£¬¿ªÏúÕ¼ 25£¨=193-168£©
¿´ 10 ¸öÖ¡£¬Èôÿһ֡ÖеĵÚһλÐγɱÈÌØ´® 0101010101£¬ÔòÅжÏͬ²½³É¹¦£¬¶øÎó ÅеĸÅÂÊΪ 1/1024£¬Ð¡ÓÚ 0.001¡£
33. What is the difference, if any, between the demodulator part of a modem and the coder part of a codec? (After all, both convert analog signals to digital ones.) (M) ÓÐÇø±ð¡£±àÂëÆ÷½ÓÊÜÈÎÒâµÄÄ£ÄâÐźţ¬²¢´ÓËü²úÉúÊý×ÖÐźš£¶ø½âµ÷Æ÷½ö½ö½ÓÊÜ µ÷ÖÆÁ˵ÄÕýÏÒ£¨»òÓàÏÒ£©²¨£¬²úÉúÊý×ÖÐźš£
룬Òò´Ë¿ªÏú±ÈÀýµÈÓÚ 25/193=13%¡£
31. Compare the maximum data rate of a noiseless 4-kHz channel using a. (a) Analog encoding (e.g., QPSK) with 2 bits per sample.
- 5 -
34. A signal is transmitted digitally over a 4-kHz noiseless channel with one sample every 125 ¦Ìsec. How many bits per second are actually sent for each of these
encoding methods?(M)
c. (a) CCITT 2.048 Mbps standard. d. (b) DPCM with a 4-bit relative signal value. e. (c) Delta modulation. a£®CCITT 2.048Mbps ±ê×¼Óà 32 ¸ö 8 λÊý¾ÝÑù±¾×é³ÉÒ»¸ö 125 µÄ»ù±¾Ö¡£¬30 ¸ö ÐŵÀÓÃÓÚ´«ÐÅÏ¢£¬2 ¸öÐŵÀÓÃÓÚ´«¿ØÖÆÐźš£ÔÚÿһ¸ö 4kHz ÐŵÀÉÏ·¢Ë͵ÄÊý¾ÝÂÊ
¾ÍÊÇ 8*8000=64kbps¡£
b£®²î·ÖÂöÂëµ÷ÖÆ£¨DPCM£©ÊÇÒ»ÖÖѹËõ´«ÊäÐÅÏ¢Á¿µÄ·½·¨£¬Ëü·¢Ë͵IJ»ÊÇÿһ´Î =x/32¡£
37. In Fig. 2-37, the user data rate for OC-3 is stated to be 148.608 Mbps. Show how this number can be derived from the SONET OC-3 parameters.(H)
³éÑùµÄ¶þ½øÖƱàÂëÖµ£¬¶øÊÇÁ½´Î³éÑùµÄ²îÖµµÄ¶þ½øÖƱàÂë¡£ÏÖÔÚÏà¶Ô²îÖµÊÇ 4 룬 ËùÒÔ¶ÔӦÿ¸ö 4kHz ÐŵÀʵ¼Ê·¢Ë͵ıÈÌØËÙÂÊΪ 4*8000=32kbps¡£ c£®ÔöÁ¿µ÷ÖÆµÄ»ù±¾Ë¼ÏëÊÇ£ºµ±³éÑùʱ¼ä¼ä¸ô s t ºÜ¶Ìʱ£¬Ä£ÄâÊý¾ÝÔÚÁ½´Î³éÑùÖ®
¼äµÄ±ä»¯ºÜС£¬¿ÉÒÔÑ¡ÔñÒ»¸öºÏÊʵÄÁ¿»¯Öµ v ×÷Ϊ½×¾à¡£°ÑÁ½´Î³éÑùµÄ²î±ð½üËÆÎª
²»ÊÇÔö¼ÓÒ»¸ö v ¾ÍÊǼõÉÙÒ»¸ö v¡£ÕâÑùÖ»ÐèÓà 1bit ¶þ½øÖÆÐÅÏ¢¾Í¿ÉÒÔ±íʾһ´Î³éÑù
½á¹û£¬¶ø²»»áÒýÈëºÜ´óÎó²î¡£Òò´Ë£¬´Ëʱ¶ÔӦÿ¸ö 4kHz ÐŵÀʵ¼Ê·¢Ë͵ÄÊý¾ÝËÙÂÊ
Ϊ 1*8000=8kHz¡£
35. A pure sine wave of amplitude A is encoded using delta modulation, with x samples/sec. An output of +1 corresponds to a signal change of +A/8, and an output
signal of -1 corresponds to a signal change of -A/8. What is the highest frequency that can be tracked without cumulative error?(E) ÔÚ²¨µÄ 1/4 ÖÜÆÚÄÚÐźűØÐë´Ó 0 A¡£ÎªÁËÄܹ»¸ú×ÙÐźţ¬ÔÚ T/4 µÄʱ¼äÄÚ £¨¼Ù¶¨²¨µÄÖÜÆÚÊÇ T£©±ØÐë²ÉÑù 8 Ñù 32 ´Î£¬²ÉÑùµÄʱ¼ä¼ä¸ô ÊÇ 1/x£¬Òò´Ë²¨µÄÈ«ÖÜÆÚ±ØÐë×ã¹»µÄ³¤£¬Ê¹µÃÄܰüº¬ 32 32/x£¬»ò f max
ÉÏÉýµ½ ´Î£¬¼´Ã¿Ò»¸öÈ«²¨²É´Î²ÉÑù£¬¼´ T >
Óû§Êý¾Ý´«Êä
ËÙÂÊÊÇ 49.546¡Á\‘@2X3£½148.608 Mbps¡£
39. What is the essential difference between message switching and packet switching?£¨E£©
±¨ÎĽ»»»ÖУ¬¶ÔÓÚÊý¾Ý¿éµÄ´óСûÓÐÈκÎÏÞÖÆ¡£
·Ö×é½»»»Ôò¶ÔÓÚÊý¾Ý¿éµÄ´óСÓÐ×î´ó·Ö×鳤¶ÈµÄÏÞÖÆ£¬Èκα¨Îij¬³öÁËÕâÒ»ÏÞÖÆ ¶¼»á±»·Ö¸î³ÉС¿éµÄ¶à¸ö·Ö×é¡£
40. What is the available user bandwidth in an OC-12c connection?£¨H£©
²úÉú 810 ×Ö½Ú¡£ÓÉÓÚ
[[µ±Ò»ÌõÏß·£¨ÀýÈç OC-3£©Ã»Óб»¸´Ó㬶øÊǽö´«ÊäÀ´×ÔÒ»¸öÔ´µÄÊý¾Ý£¬ÔòÔÚÏß Â·Ãû³ÆºóÃæ¼ÓÒ»¸ö×Öĸ c£¨±íʾ conactenation£¬¼´´®Áª£©¡£Òò´Ë£¬OC-3 ±íʾÁËÓÉ 3 Ìõ¶ÀÁ¢µÄ OC-1 Ïß·¹¹³ÉµÄÒ»Ìõ 155.52Mbps Ïß·£¬¶ø OC-3c ±íʾÀ´×ÔÓÚµ¥¸öÔ´µÄ
155.52Mbps µÄÊý¾ÝÁ÷¡£OC-3c Á÷ÄÚµÄ 3 ¸ö OC-1 Á÷±»°´Áн»Ìæ²åÈ룬Ê×ÏÈÊÇÁ÷ 1 µÄ
»ù±¾µÄ SONET£¨Í¬²½¹âÍøÂ磩֡ÊÇÿ 125
SONET ÊÇͬ²½
µÄ£¬Òò´Ë²»ÂÛÊÇ·ñÓÐʵ¼ÊÒª·¢Ë͵ÄÊý¾Ý£¬Ö¡¶¼´æÔÚ¡£Ã¿Ãë 8000 Ö¡µÄËÙÂÊÕýºÃ·ûºÏ
ËùÓÐÊý×ֵ绰ϵͳÖÐʹÓÃµÄ PCM ÐŵÀµÄ²ÉÑùÂÊ¡£¶ÔÓÚ 810 ×Ö½ÚµÄ SONET Ö¡£¬Í¨ - 6 - ³£Óà 90 ÁгËÒÔ 9 ÐеľØÐÎÀ´ÃèÊö£¬Ã¿¸öµ¥Ôª¶ÔÓ¦Ò»¸ö×Ö½Ú¡£Ã¿Ãë´«ËÍ 8000 ´Î£¬Ã¿
´Î 8*810=6480 룬×ÜÊý¾Ý´«ÊäÂÊΪ 51.84Mbps¡£Õâ¾ÍÊÇ»ù±¾µÄ SONET ÐŵÀ£¬Ëü±»
³Æ×÷ͬ²½´«ÊäÐźŠSTS-1£¬ËùÓÐµÄ SONET ¸ÉÏß¶¼ÊÇ STS-1 µÄ±¶Êý¡£Ã¿Ò»Ö¡µÄǰ 3 ÁÐ ±»±£Áô£¬ÓÃÓÚ¹ÜÀíÐÅϢϵͳ£¬Ç° 3 Ðаüº¬¶Î¿ªÏú£¬ºó 6 Ðаüº¬Ïß·¿ªÏú¡£Ê£Ï嵀 87 Áаüº¬ 87¡Á9¡Á8¡Á8000£½50.112Mbps µÄÓû§Êý¾Ý¡£Óû§Êý¾Ý£¨³ÆÎªÍ¬²½ÔغÉÐŷ⣬
¼´ SPE£©¿ÉÒÔ´ÓÖ¡ÄÚµÄÈÎһλÖÿªÊ¼£¬²¢²»ÏÞÓÚµÚ 1 ÐУ¬µÚ 4 ÁС£Ïß·¿ªÏúµÄµÚÒ»
Ðаüº¬Ö¸Ïò SPE µÄµÚÒ»×Ö½ÚµÄÖ¸Õ룬SPE µÄµÚÒ»ÁÐÊÇ·¾¶¿ªÏú¡£ ·¾¶¿ªÏú²»ÊÇÑϸñµÄ SONET ½á¹¹£¬ËüÔÚǶÈëÔÚÔØºÉÐÅ·âÖС£Â·¾¶¿ªÏú¶Ëµ½¶ËµÄ
Á÷¹ýÍøÂ磬Òò´Ë°ÑËüÓë¶Ëµ½¶ËµÄÔËÔØÓû§ÐÅÏ¢µÄ SPE Ïà¹ØÁªÊÇÓÐÒâÒåµÄ¡£È»¶ø£¬Ëü
´Ó¿ÉÌṩ¸øÖն˵ÄÓû§Êý¾ÝÖÐµÄ 50.112Mbps ÖÐÓÖ¼õÈ¥ 1¡Á9¡Á8¡Á8000£½0.576Mbps£¬
ʹ֮±ä³É 49.536Mbps ¡£OC-3 Ï൱ÓÚ 3 ¸ö OC-1 ¸´ÓÃÔÚÒ»Æð£¬Òò´ËÆä
µÚ 1 ÁУ¬Á÷ 2 µÄµÚ 1 ÁУ¬Á÷ 3 µÄµÚ 2 ÁУ¬Á÷ 2 µÄµÚ 2 ÁУ¬ ÒÔ´ËÀàÍÆ£¬×îºóÐÎ³É 270 Áпí 9
µÄµÚ 1 ÁУ¬ËæºóÊÇÁ÷ 1
ÐиߵÄÖ¡¡£
ΪÁËʹ·Ö×é½»»»±Èµç·½»»»¿ì£¬±ØÐ룺
OC-3c Á÷ÖеÄÓû§Êµ¼ÊÊý¾Ý´«ÊäËÙÂÊ±È OC-3 Á÷µÄËÙÂÊÂԸߣ¨149.760MbpsËùÒÔ£º
ºÍ 43. Suppose that x bits of user data are to be transmitted over a k-hop path in a 148.608Mbps£©£¬ÒòΪ·¾¶¿ªÏú½öÔÚ SPE ÖгöÏÖÒ»´Î£¬¶ø²»Êǵ±Ê¹Óà 3 Ìõµ¥¶À packet-switched network as a series of packets, each containing p data bits and h OC-1 header bits, with x >>p + h. The bit rate of the lines is b bps and the propagation Á÷ʱ³öÏÖµÄ 3 ´Î¡£»»¾ä»°Ëµ£¬OC-3c ÖÐ 270 ÁÐÖÐµÄ delay is negligible. What value of p minimizes the total delay?£¨M£© 260 ÁпÉÓÃÓÚÓû§Êý¾Ý£¬¶øÔÚ ËùÐèÒªµÄ·Ö×é×ÜÊýÊÇ x/p£¬Òò´Ë¼ÓÉÏÍ·ÐÅÏ¢µÄ×ÜÊý¾ÝÁ¿Îª(p+h)x/p λ¡£ OC-3 ÖнöÄÜʹÓà 258 ÁС£¸ü¸ß²ã´ÎµÄ´®ÁªÖ¡£¨Èç OC-12c£©Ò²´æÔÚÕâÑùµÄÇé¿ö¡£]] Ô´¶Ë·¢ËÍÕâЩλÐèҪʱ¼äΪ(p+h)x/pb£¬ OC-12c Ö¡ÓÐ 12*90=1080 ÁÐºÍ 9 ÐС£ÆäÖжοªÏúºÍÏß·¿ªÏúÕ¼ 12*3=36ÖмäµÄ·ÓÉÆ÷ÖØ´«×îºóÒ»¸ö·Ö×éËù»¨µÄ×Üʱ¼äΪ(k-1)(p+h)/b£¬
ÁУ¬Õâ
Ñùͬ²½ÔغÉÐÅ·â¾ÍÓÐ 1080-36=1044 ÁС£SPE Öнö 1 ÁÐÓÃÓÚ·¾¶¿ªÏú£¬½á¹û¾ÍÊÇ 1043 ÁÐÓÃÓÚÓû§Êý¾Ý¡£
ÓÉÓÚÿÁÐ 9 ¸ö×Ö½Ú£¬Òò´ËÒ»¸ö OC-12c Ö¡ÖÐÓû§Êý¾Ý±ÈÌØÊýÊÇ 8 ¡Á\‘@2X9¡Á1043£½75096¡£ ÿÃë 8000 Ö¡£¬µÃµ½Óû§Êý¾ÝËÙÂÊ 75096¡Á8000 =600768000bps£¬¼´ 600.768Mbps¡£ ËùÒÔ£¬ÔÚÒ»Ìõ OC-12c
Á¬½ÓÖпÉÌṩµÄÓû§´ø¿íÊÇ 600.768Mbps¡£ Òò´ËÎÒÃǵõ½µÄ×ܵÄÑÓ³ÙΪ 41. Three packet-switching networks each contain n nodes. The first network has a star topology with a central switch, the second is a (bidirectional) ring, and the third is fully interconnected, with a wire from every node to every other node. What are the best-, average-, and-worst case transmission paths in hops?£¨E£© ÈýÖÖÍøÂçµÄÌØÐÔÈçÏ£º
ÐÇÐÍ£º×îºÃΪ 2£¬×î²îΪ 2£¬Æ½¾ùΪ 2£» »·ÐÍ£º×îºÃΪ 1£¬×î²îΪ n/2£¬Æ½¾ùΪ n/4 Èç¹û¿¼ÂÇ n ÎªÆæÅ¼Êý£¬
Ôò n ÎªÆæÊýʱ£¬×Ϊ£¨n-1£©/2£¬Æ½¾ùΪ£¨n+1£©/4 n ΪżÊýʱ£¬×Ϊ n/2£¬Æ½¾ùΪ n2/4(n1) È«Á¬½Ó£º×îºÃΪ 1£¬×î²îΪ 1£¬Æ½¾ùΪ 1¡£ £¬
¶Ô¸Ãº¯ÊýÇó p µÄµ¼Êý£¬µÃµ½ £¬Áî µÃµ½
ÒòΪp£¾0£¬ËùÒÔ ¹Ê ʱÄÜʹ×ܵÄÑÓ³Ù×îС¡£ ¶ÔÓڵ緽»»»£¬ t= s ʱµç·½¨Á¢ÆðÀ´£»t£½s+x/d ʱ±¨ÎĵÄ×îºóһλ·¢ËÍÍê±Ï£»t= s+x/d+kb ʱ±¨Îĵ½´ïÄ¿µÄµØ¡£¶ø¶ÔÓÚ·Ö×é½»»»£¬×îºóһλÔÚ t=x/bʱ·¢ËÍÍê±Ï¡£
Ϊµ½´ï×îÖÕÄ¿µÄµØ£¬×îºóÒ»¸ö·Ö×鱨Ðë±»ÖмäµÄ·ÓÉÆ÷ÖØ·¢ k-1 ´Î£¬Ã¿´ÎÖØ·¢»¨
42. Compare the delay in sending an x-bit message over a k-hop path in a ʱ¼ä p/b£¬ËùÒÔ×ܵÄÑÓ³ÙΪ circuit-switched network and in a (lightly loaded) packet-switched network. The circuit setup time is s sec, the propagation delay is d sec per hop, the packet size is p
bits, and the data rate is b bps. Under what conditions does the packet network have
a lower delay?(M)
44. In a typical mobile phone system with hexagonal cells, it is forbidden to reuse
a frequency band in an adjacent cell. If 840 frequencies are available, how many can
be used in a given cell?£¨B£©
ÿ¸ö·äÎѵ¥Ôª¶¼ÓÐ 6 ¸öÁÚ¾Ó¡£¼Ù¶¨ÖмäµÄµ¥ÔªÊ¹ÓÃÆµÂÊ A£¬ËüµÄÁÚ¾ÓÔò¿ÉÒÔÒÀ´Î
ʹÓà B£¬C£¬B£¬C£¬B£¬C£¬Ò²¾ÍÊÇ˵£¬Ö»ÐèÓÃÈý¸öÏ໥¶ÀÁ¢µÄµ¥Ôª¾Í×ã¹» another,
the current call is abruptly terminated, even though all transmitters and receivers are functioning perfectly. Why?£¨E£©
ÔÚÁÚ½üµÄ·äÎѵ¥ÔªÖÐÆµÂʲ»Äܸ´Óá£ËùÒÔµ±Ò»ÃûÓû§´ÓÒ»¸öµ¥ÔªÒƶ¯µ½ÁíÒ»¸öµ¥ Ԫʱ£¬±ØÐë¸øËû·ÖÅäÒ»¸öÐÂµÄÆµÂÊ¡£Èç¹ûµ±Óû§ÒƵ½Ò»¸öеĵ¥Ôª£¬µ«Êǵ±Ç°µÄРµ¥ÔªÖеÄËùÓÐÆµÂʶ¼ÔÚʹÓÃÖУ¬ÔòÓû§µÄºô½Ð±ØÐë±»ÖÕÖ¹¡£
ÁË¡£ËùÒÔ£¬
ÿ¸öµ¥Ôª¿ÉÒÔʹÓà 280 ÖÖÆµÂÊ¡£
47. Sometimes when a mobile user crosses the boundary from one cell to
- 7 -
48. D-AMPS has appreciably worse speech quality than GSM. Is this due to the requirement that D-AMPS be backward compatible with AMPS, whereas GSM had
no such constraint? If not, what is the cause?£¨M£© It is not caused directly by the need for backward compatibility. The 30 kHz channel
was indeed a requirement, but the designers of D-AMPS did not have to stuff three users
into it. They could have put two users in each channel, increasing the payload before error correction from 260 ¡Á50=13 kbps to 260¡Á\‘@2X75 =19.5 kbps. Thus, the quality loss was
an intentional trade-off to put more users per cell and thus get away with bigger cells. 49. Calculate the maximum number of users that D-AMPS can support simultaneously within a single cell. Do the same calculation for GSM. Explain the difference.£¨M£©
D-AMPS uses 832 channels (in each direction) with three users sharing a single channel. This allows D-AMPS to support up to 2496 users simultaneously per cell. GSM
uses 124 channels with eight users sharing a single channel. This allows GSM to support
up to 992 users simultaneously. Both systems use about the same amount of spectrum (25
MHz in each direction).
D-AMPS uses 30 KHz¡Á\‘@2X832 = 24.96 MHz. GSM uses 200 KHz ¡Á\‘@2X124 =24.80 MHz.
The difference can be mainly attributed to the better speech quality provided by GSM (13
Kbps per user) over D-AMPS (8 Kbps per user). 50. Suppose that A, B, and C are simultaneously transmitting 0 bits, using a CDMA system with the chip sequences of Fig. 2-45(b). What is the resulting chip sequence?£¨E£©
´«Êä 0£¬Ôòʱ¼äƬÐòÁÐÈ¡Æä²¹Â룬´«Êä 1£¬Ôòʱ¼äÐòÁÐÈ¡Æä±¾Éí¡£ ½« A£¬B£¬C Ïà¼Óºó£¬È¡²¹ÂëµÃ½á¹ûΪ£º(+3 +1 +1 -1 -3 -1 -1 +1).
51. In the discussion about orthogonality of CDMA chip sequences, it was stated
that if S?T = 0 then S??T is also 0. Prove this.(E)
percent
chance of arriving undamaged. If no error control is done by the data link protocol, how many times must the message be sent on average to get the entire thing through? £¨E£©
ÓÉÓÚÿһ֡ÓÐ 0.8 p=0.810=0.107¡£
ΪʹÐÅÏ¢ÍêÕûµÄµ½´ï½ÓÊÕ·½£¬·¢ËÍÒ»´Î³É¹¦µÄ¸ÅÂÊÊÇ p µÄ¸ÅÂÊÕýÈ·µ½´ï£¬Õû¸öÐÅÏ¢ÕýÈ·µ½´ïµÄ¸ÅÂÊΪ
£¬¶þ´Î³É¹¦µÄ¸ÅÂÊ
By definition
If T sends a 0 bit instead of 1 bit, its chip sequence is negated, with the i-th element
ÊÇ
becoming Ti . Thus,
(1-p)p£¬Èý´Î³É¹¦µÄ¸ÅÂÊΪ(1-p)2 p£¬i ´Î
52. Consider a different way of looking at the orthogonality property of - 8 -
CDMA
chip sequences. Each bit in a pair of sequences can match or not match. Express the
orthogonality property in terms of matches and mismatches.
When two elements match, their product is +1. When they do not match, their product
is -1. To make the sum 0, there must be as many matches as mismatches. Thus, two chip
sequences are orthogonal if exactly half of the corresponding elements match and exactly
half do not match.
53. A CDMA receiver gets the following chips: (-1 +1 -3 +1 -1 -3 +1 +1). Assuming
the chip sequences defined in Fig. 2-45(b), which stations transmitted, and which
bits did each one send?£¨E£©
·Ö±ðÓ루-1 +1 -3 +1 -1 -3 +1 +1£©×öÄÚ»ý£º
A£º£¨-1 +1 -3 +1 -1 -3 +1 +1£©d (-1 -1 -1 +1 +1 -1 +1 +1) /8 = 1 B£º£¨-1 +1 -3 +1 -1 -3 +1 +1£©d (-1 -1 +1 -1 +1 +1 +1 -1) /8 = -1 C£º£¨-1 +1 -3 +1 -1 -3 +1 +1£©d (-1 +1 -1 +1 +1 +1 -1 -1) /8 = 0 D£º£¨-1 +1 -3 +1 -1 -3 +1 +1£©d (-1 +1 -1 -1 -1 -1 +1 -1) /8 = 1
ËùÒÔ A£¬D ·¢Ë͵ͼÊÇ 1 bits£¬B ·¢Ë͵ÄÊÇ 0 bit,£¬C ûÓз¢ËÍ Chapter 3 The Data Link Layer Problems
1. An upper-layer packet is split into 10 frames, each of which has an 80
´Î³É¹¦µÄ¸ÅÂÊΪ(1-p)i-1p£¬Òò´Ëƽ¾ùµÄ·¢ËÍ
ÊýµÈÓÚ£º
2. The following character encoding is used in a data link protocol: A: 01000111;
B: 11100011; FLAG: 01111110; ESC: 11100000 Show the bit sequence of
a single bit to cause an error not detected by the checksum? If not, why not? If so, how? Does the checksum length play a role here?£¨M£© ¿ÉÄÜ¡£¼Ù¶¨ÔÀ´µÄÕýÎİüº¬Î»ÐòÁÐ 01111110 ½«±ä³É 011111010¡£Èç¹ûÓÉÓÚ´«Êä´íÎóµÚ¶þ¸ö 0
×÷ΪÊý¾Ý¡£Î»Ìî³äÖ®ºó£¬Õâ¸öÐòÁÐ ¶ªÊ§ÁË£¬ÊÕµ½µÄλ´®ÓÖ±ä³É
transmitted
(in binary) for the four-character frame: A B ESC FLAG when each of the following framing methods are used: a. (a) Character count.
b. (b) Flag bytes with byte stuffing.
c. (c) Starting and ending flag bytes, with bit stuffing.£¨E£© ½á¹ûΪ
(a)×Ö·û¼ÆÊý 00000101 01000111 11100011 11100000 01111110
(b)×Ö½ÚÌî³ä 01111110 01000111 11100011 11100000 11100000 11100000 01111110 01111110
(c)λÌî³ä 01111110 01000111 110100011 111000000 011111010 01111110
3. The following data fragment occurs in the middle of a data stream for which the byte-stuffing algorithm described in the text is used: A B ESC C ESC FLAG FLAG D. What is the output after stuffing?£¨E£©
Ìî³äºó½á¹ûΪ£ºA B ESC ESC C ESC ESC ESC FLAG ESC FLAG D. 4. One of your classmates, Scrooge, has pointed out that it is wasteful to end each
frame with a flag byte and then begin the next one with a second flag byte. One flag
byte could do the job as well, and a byte saved is a byte earned. Do you agree?£¨E£©
Ö»ÓÃÒ»¸ö±ê¼ÇλÎÞ·¨ÖªµÀÒ»Ö¡ºÎʱ½áÊø¡£Èç¹ûÖ¡Á÷ÊÇÎÞÏÞÁ¿µÄ£¬Ò»¸ö±ê¼Çλ»òÐí
ÊÇ¿ÉÒԵġ£µ«Êǵ±Ò»Ö¡ÒÔ±ê¼Çλ½áÊøÁËÖ®ºó£¬ÔÚÒ»¶Îʱ¼äÄÚ£¨±ÈÈç 15 ·ÖÖÓ£©Ã»ÓÐÐÂ
µÄÖ¡µ½´ïʱ£¬½ÓÊÕÕßÈçºÎÀ´·Ö±æ³öÏÂÒ»×Ö½ÚÊÇÕæÕýµÄÐÂÖ¡µÄ¿ªÊ¼»¹ÊÇÅöÇÉÊÇÏß·ÉÏ
µÄÔëÉùÄØ£¿ÕâÑùµÄÐÒéÉè¼ÆµÄ¹ýÓÚ¼òµ¥ÁË¡£
5. A bit string, 0111101111101111110, needs to be transmitted at the data link layer. What is the string actually transmitted after bit stuffing?£¨E£© Êä³ö£º011110111110011111010.
6. When bit stuffing is used, is it possible for the loss, insertion, or modification
01111110£¬±»½ÓÊÕ·½¿´³ÉÊÇ֡β¡£È»ºó½ÓÊÕ·½Ôڸô®µÄÇ°ÃæÑ°ÕÒ¼ìÑéºÍ£¬²¢¶ÔËü½ø
ÐÐÑéÖ¤¡£Èç¹û¼ìÑéºÍÊÇ 16 룬ÄÇô±»´íÎóµÄ¿´³ÉÊǼìÑéºÍµÄ 16 λµÄÄÚÈÝÅöÇɾÑé
Ö¤ºóÈÔÈ»ÕýÈ·µÄ¸ÅÂÊÊÇ 1/216¡£Èç¹ûÕâÖÖ¸ÅÂʵÄÌõ¼þ³ÉÁ¢ÁË£¬¾Í»áµ¼Ö²»ÕýÈ·µÄÖ¡±»
½ÓÊÕ¡£ÏÔÈ»£¬¼ìÑéºÍ¶ÎÔ½³¤£¬´«Êä´íÎó²»±»·¢ÏֵĸÅÂÊ»áÔ½µÍ£¬µ«¸Ã¸ÅÂÊÓÀÔ¶²»µÈ ÓÚÁã¡£
16. Data link protocols almost always put the CRC in a trailer rather than in a
header. Why?£¨E£©
CRC ÊÇÔÚ·¢ËÍÆÚ¼ä½øÐмÆËãµÄ¡£Ò»µ©°Ñ×îºóһλÊý¾ÝËÍÉÏÍâ³öÏß·£¬¾Í
numbers be?£¨M£©
ΪÁËÓÐЧÔËÐУ¬ÐòÁпռ䣨ʵ¼ÊÉϾÍÊÇ·¢ËÍ´°¿Ú´óС£©±ØÐë×ã¹»µÄ´ó£¬ÒÔÔÊÐí·¢ ËÍ·½ÔÚÊÕµ½µÚÒ»¸öÈ·ÈÏÓ¦´ð֮ǰ¿ÉÒÔ²»¶Ï·¢ËÍ¡£ÐźÅÔÚÏß·ÉϵĴ«²¥Ê±¼äΪ 6¡Á3000=18000 ÔÚ T1 ËÙÂÊ£¬·¢ËÍ 64
Ö¡Ð軨µÄʱ¼ä£º64¡Á8¡Â(1.536¡Á106)= 0.33
£¬¼´ 18ms¡£
×Ö½ÚµÄÊý¾Ý¡£
ËùÒÔ£¬·¢Ë͵ĵÚÒ»Ö¡´Ó¿ªÊ¼·¢ËÍÆð£¬18.33ms ºóÍêÈ«µ½´ï½ÓÊÕ·½¡£È·ÈÏÓ¦´ðÓÖ»¨ Á˺ÜÉٵķ¢ËÍʱ¼ä£¨ºöÂÔ²»¼Æ£©ºÍ»Ø³ÌµÄ 18ms¡£ÕâÑù£¬¼ÓÔÚÒ»ÆðµÄʱ¼äÊÇ 36.33ms¡£
·¢ËÍ·½Ó¦¸ÃÓÐ×ã¹»´óµÄ´°¿Ú£¬´Ó¶øÄܹ»Á¬Ðø·¢ËÍ 36.33ms¡£ 36. 33/0.33=110
Ò²¾ÍÊÇ˵£¬Îª³äÂúÏß·¹ÜµÀ£¬ÐèÒªÖÁÉÙ 110 Ö¡£¬Òò´ËÐòÁкÅΪ Á¢¼´°Ñ
CRC ±àÂ븽¼ÓÔÚÊä³öÁ÷µÄºóÃæ·¢³ö¡£Èç¹û°Ñ CRC ·ÅÔÚÖ¡µÄÍ·²¿£¬ÄÇ7 λ¡£ ô¾ÍÒªÔÚ·¢ËÍ ÕâÒ»ÌâÓÐÕùÒéµÄµØ·½ÊÇ T1 µÄËÙ¶È£¬T1 µÄÊý¾ÝËÙÂʸù¾ÝËüµÄ½á¹¹Ó¦¸ÃÊÇ£¨193-1-24£© ֮ǰ°ÑÕû¸öÖ¡Ïȼì²éÒ»±éÀ´¼ÆËã CRC¡£ÕâÑùÿ¸ö×Ö½Ú¶¼Òª´¦ÀíÁ½±é£¬µÚÒ»/193*1.544=1.344mbps,µ«ÊÇ´ð°¸ÖÐÊÇ£¨193-1£©/193*1.544=1.536mbps¡£ ±éÊÇΪÁË
- 9 -
¼ÆËã¼ìÑéÂ룬µÚ¶þ±éÊÇΪÁË·¢ËÍ¡£°Ñ CRC ·ÅÔÚβ²¿¾Í¿ÉÒÔ°Ñ´¦Àíʱ¼ä¼õ°ë¡£
17. A channel has a bit rate of 4 kbps and a propagation delay of 20 msec. For
what range of frame sizes does stop-and-wait give an efficiency of at least 50 percent? £¨E£©
µ±·¢ËÍÒ»Ö¡µÄʱ¼äµÈÓÚÐŵÀµÄ´«²¥ÑÓ³ÙµÄ 2
±¶Ê±£¬ÐŵÀµÄÀûÓÃÂÊΪ
50%¡£»òÕß˵£¬
µ±·¢ËÍÒ»Ö¡µÄʱ¼äµÈÓÚÀ´»ØÂ·³ÌµÄ´«²¥ÑÓ³Ùʱ£¬Ð§Âʽ«ÊÇ 50%¡£¶øÔÚÖ¡³¤Âú×ã·¢ËÍ
ʱ¼ä´óÓÚÑÓ³ÙµÄÁ½±¶Ê±£¬Ð§Âʽ«»á¸ßÓÚ 50%¡£ ÏÖÔÚ·¢ËÍËÙÂÊΪ 4Mb/s£¬·¢ËÍһλÐèÒª 0.25 ¡£
Ö»ÓÐÔÚÖ¡³¤²»Ð¡ÓÚ 160kb ʱ£¬Í£µÈÐÒéµÄЧÂʲŻáÖÁÉÙ´ïµ½ 50%¡£
18. A 3000-km-long T1 trunk is used to transmit 64-byte frames using protocol 5.
If the propagation speed is 6 ¦Ìsec/km, how many bits should the sequence
19. In protocol 3, is it possible that the sender starts the timer when it is already running? If so, how might this occur? If not, why is it impossible?(M)
ÐÒé 3 ÖУ¬·¢ËÍÕßÓпÉÄÜÆô¶¯Ò»¸öÒѾÔËÐÐ×ŵļÆÊ±Æ÷¡£¼ÙÉè·¢ËÍÕß´«ÊäÒ»Ö¡²¢ ÇÒѸËÙ·µ»ØÒ»¸ö´íÎóµÄÈ·ÈÏ¡£Ö÷Ñ»·½«»áÖ´ÐÐÒ»¶Îʱ¼ä²¢ÇÒ½«»á·¢ËÍÒ»Ö¡£¬È»¶øÕâ ¿ÉÄܵ¼ÖÂËÀËø¡£
¼Ù¶¨ÓÐÒ»×éÖ¡ÕýÈ·µ½´ï£¬²¢±»½ÓÊÕ¡£È»ºó£¬½ÓÊÕ·½»áÏòÇ°ÒÆ¶¯´°¿Ú¡£ÏÖÔÚ¼Ù¶¨Ëù
ʱ¼ÆÊ±Æ÷ÈÔÈ»ÊÇÔËÐÐ×ŵġ£ 20. Imagine a sliding window protocol using so many bits for sequence numbers that wraparound never occurs. What relations must hold among the four window edges and the window size, which is constant and the same for both the sender and the receiver.(M) ʹ·¢ËÍÕߵĴ°¿ÚΪ (Sl , Su) Ö®¼äµÄ¹ØÏµÓ¦Âú×㣺 0 <= Su- Sl +1 <= W1 Ru - Rl + 1 = W Sl <= Rl <=Su + 1 21. If the procedure between in protocol 5 checked for the condition a <= b <=c instead of the condition a <= b < c, would that have any effect on the protocol's correctness or efficiency? Explain your answer.£¨H£© ¸Ä±ä¼ì²éÌõ¼þºó£¬ÐÒ齫±äµÃ²»ÕýÈ·¡£ ¼Ù¶¨Ê¹Óà 3 λÐòÁкţ¬¿¼ÂÇÏÂÁÐÐÒéÔËÐйý³Ì£ºA Õ¾¸Õ·¢³ö 7 ºÅÖ¡£»B Õ¾½ÓÊÕµ½ Õâ¸öÖ¡£¬²¢·¢³öÉÓ´øÓ¦´ð ack£»A Õ¾ÊÕµ½ ack£¬²¢·¢ËÍ 0~6 ºÅÖ¡¡£¼Ù¶¨ËùÓÐÕâЩ֡¶¼ £¬½ÓÊÕÕߵĴ°¿ÚΪ (Rl , Ru)£¬´°¿Ú´óСΪ W£¬ÔòËüÃÇ ÔÚ´«Êä¹ý³ÌÖжªÊ§ÁË£»B Õ¾³¬Ê±£¬ÖØ·¢ËüµÄµ±Ç°Ö¡£¬´ËʱÉÓ´øµÄÈ·ÈϺÅÊÇ 7£»¿¼²ì A Õ¾ÔÚ r.rack = 7 µ½´ïʱµÄÇé¿ö£¬¹Ø¼ü±äÁ¿ÊÇ ack_expected = 0£¬r.rack = 7£¬ next_frame_to_send_= 7¡£ Ð޸ĺóµÄ¼ì²éÌõ¼þ½«±»ÖóɨDÕæ¡¬£¬²»»á±¨¸æÒÑ·¢ÏֵĶªÊ§Ö¡´íÎ󣬶øÎóÈÏΪ¶ªÊ§ Á˵ÄÖ¡Òѱ»È·ÈÏ¡£ÁíÒ»·½Ã棬Èç¹û²ÉÓÃÔÏȵļì²éÌõ¼þ£¬¾ÍÄܹ»±¨¸æ¶ªÊ§Ö¡µÄ´íÎó¡£ ËùÒÔ½áÂÛÊÇ£ºÎª±£Ö¤ÐÒéµÄÕýÈ·ÐÔ£¬ÒѽÓÊÕµÄÈ·ÈÏÓ¦´ðºÅÓ¦¸ÃСÓÚÏÂÒ»¸öÒª·¢Ë굀 ÐòÁкš£ 22. In protocol 6, when a data frame arrives, a check is made to see if the sequence number differs from the one expected and no_nak is true. If both
conditions hold, a NAK is sent. Otherwise, the auxiliary timer is started. Suppose that the else clause were omitted. Would this change affect the protocol's correctness?(M)
ÓеÄÈ·ÈÏÖ¡¶¼¶ªÊ§ÁË£¬·¢ËÍ·½×îÖÕ»á²úÉú³¬Ê±Ê¼þ£¬²¢ÇÒÔٴη¢Ë͵ÚÒ»Ö¡£¬½ÓÊÕ·½
A Õ¾·¢ËÍ 0 ºÅÖ¡¸ø B Õ¾¡£B Õ¾ÊÕµ½´ËÖ¡£¬²¢·¢ËÍ ACK Ö¡£¬µ« ACK ¶ªÊ§ÁË¡£A Õ¾
½«·¢ËÍÒ»¸ö NAK¡£È»ºó NONAK ±»ÖóÉα¡£¼Ù¶¨ NAK
·¢Éú³¬Ê±£¬ÖØ·¢ 0 ºÅÖ¡¡£µ« B Õ¾ÏÖÔÚÆÚ´ý½ÓÊÕ 1 ºÅÖ¡£¬Òò´Ë·¢ËÍ NAK£¬·ñ
Ò²¶ªÊ§ÁË¡£ÄÇô´ÓÕâ¸öʱ ¶¨ÊÕµ½
ºò¿ªÊ¼£¬·¢ËÍ·½»á²»¶Ï·¢ËÍÒѾ±»½ÓÊÕ·½½ÓÊÜÁ˵ÄÖ¡¡£½ÓÊÕ·½Ö»ÊǺöÂÔÕâЩ֡£¬µ« µÄ 0 ºÅÖ¡¡£ÏÔÈ»£¬ÏÖÔÚ A Õ¾×îºÃ²»ÖØ·¢ 0 ºÅÖ¡¡£ÓÉÓÚÌõ¼þ ÓÉÓÚ NONAK ΪᣬËùÒÔ²»»áÔÙ·¢ËÍ NAK£¬´Ó¶ø²úÉúËÀËø¡£Èç¹ûÉèÖø¨Öú¼ÆÊýÆ÷ r.rack+1 removed from the code. Would this affect the correctness of the protocol or just the ¾Í˵Ã÷ÁËÕâ¶Î³ÌÐòÖеÄÁíÒ»¸öÌõ¼þ£¬¼´ r.rack+1 ɾ³ýÕâÒ»¶Î³ÌÐò»áÓ°ÏìÐÒéµÄÕýÈ·ÐÔ£¬µ¼ÖÂËÀËø¡£ÒòΪÕâÒ»¶Î³ÌÐò¸ºÔð´¦Àí½ÓÊÕ 26. Imagine that you are writing the data link layer software for a line used to µ½µÄÈ·ÈÏÖ¡£¬Ã»ÓÐÕâÒ»¶Î³ÌÐò£¬·¢ËÍ·½»áÒ»Ö±±£³Ö³¬Ê±Ìõ¼þ£¬´Ó¶øÊ¹µÃÐÒéµÄÔËÐÐ send data to you, but not from you. The other end uses HDLC, with a 3-bit sequence ²»ÄÜÏòǰ½øÕ¹¡£ number and a window size of seven frames. You would like to buffer as many out-of-sequence frames as possible to enhance efficiency, but you are not allowed to 24. Suppose that the case for checksum errors were removed from the switch statement of protocol 6. How would this change affect the operation of the protocol? modify the software on the sending side. Is it possible to have a receiver window greater than 1, and still guarantee that the protocol will never fail? If so, what is the £¨M£© largest window that can be safely used?£¨E£© Õ⽫»áʧȥʹÓà NAKs µÄÄ¿µÄ£¬Òò´ËÎÒÃDz»µÃ²»»ØÍ˵½³¬Ê±¡£¾¡¹ÜÐÔÄÜÉÏÓÐËùÏ ½µ£¬µ«ÊDz»Ó°ÏìÐÒéµÄÕýÈ·ÐÔ¡£NAKs ²¢²»ÊǹؼüµÄ¡£ 25. In protocol 6 the code for frame_arrival has a section used for NAKs. This section is invoked if the incoming frame is a NAK and another condition is met. Give a scenario where the presence of this other condition is essential.£¨M£© ÕâÀïÒªÇó r.rack+1 ²»¿ÉÒÔ¡£×î´ó½ÓÊÕ´°¿ÚµÄ´óС¾ÍÊÇ 1¡£ÏÖÔÚ¼Ù¶¨¸Ã½ÓÊÕ´°¿ÚÖµ±äΪ 2¡£¿ªÊ¼Ê±·¢ËÍ ·½·¢ËÍ 0 ÖÁ 6 ºÅÖ¡£¬ËùÓÐ 7 ¸öÖ¡¶¼±»ÊÕµ½£¬²¢×÷ÁËÈ·ÈÏ£¬µ«È·Èϱ»¶ªÊ§¡£ÏÖÔÚ½Ó ÊÕ·½×¼±¸½ÓÊÕ 7 ºÅºÍ 0 ºÅÖ¡£¬µ±ÖØ·¢µÄ 0 ºÅÖ¡µ½´ï½ÓÊÕ·½Ê±£¬Ëü½«»á±»»º´æ±£Áô£¬ - 10 - ½ÓÊÕ·½È·ÈÏ 6 ºÅÖ¡¡£µ± 7 ºÅÖ¡µ½À´µÄʱºò£¬½ÓÊÕ·½for ½«°Ñ 7 ºÅÖ¡ºÍ»º´æµÄ 0 ºÅÖ¡´« d. (a) Stop-and-wait. µÝ¸øÖ÷»ú£¬µ¼ÖÂÐÒé´íÎó¡£Òò´Ë£¬Äܹ»°²È«Ê¹ÓõÄ×î´ó´°¿ÚֵΪ 1¡£ e. (b) Protocol 5. 27. Consider the operation of protocol 6 over a 1-Mbps error-free line. The f. (c) Protocol 6.£¨E£© maximum frame size is 1000 bits. New packets are generated 1 second apart. The ¶ÔÓ¦ÈýÖÖÐÒéµÄ´°¿Ú´óСֵ·Ö±ðÊÇ 1¡¢7 ºÍ 4¡£ timeout interval is 10 msec. If the special acknowledgement timer were eliminated, unnecessary timeouts would occur. How many times would the average message be ʹÓÃÎÀÐÇÐŵÀ¶Ëµ½¶ËµÄµäÐÍ´«ÊäÑÓ³ÙÊÇ 270ms£¬ÒÔ 1Mb/s transmitted?£¨E£© 1000bit ³¤µÄÖ¡ ·¢ËÍ 1 λÓÃʱ¼ä 1 £¬·¢ËÍ 1000bit µÄ×֡»¨Ê±¼ä 1ms¡£ÓÉÓÚ³¬Ê±¼ä¸ôÊÇ 10ms£¬ ¶ø 1s ²ÅÄܲúÉúÒ»¸öеÄÊý¾ÝÖ¡£¬ËùÒÔ³¬Ê±ÊDz»¿É±ÜÃâµÄ¡£¼Ù¶¨ A Õ¾Ïò B Õ¾·¢ËÍ Ò»¸öÖ¡£¬ÕýÈ·µ½´ï½ÓÊÕ·½£¬µ«½Ï³¤Ê±¼äÎÞ·´Ïò½»Í¨¡£²»¾Ã£¬A Õ¾·¢Éú³¬Ê±Ê¼þ£¬µ¼ ÖÂÖØ·¢ÒÑ·¢¹ýµÄÒ»Ö¡¡£ B Õ¾·¢ÏÖÊÕµ½µÄÖ¡µÄÐòÁкŴíÎó£¬ÒòΪ¸ÃÐòÁкÅСÓÚËùÆÚ´ý½ÓÊÕµÄÐòÁкš£Òò´Ë B Õ¾½«·¢ËÍÒ»¸ö NAK£¬¸Ã NAK »áЯ´øÒ»¸öÈ·ÈϺţ¬µ¼Ö²»ÔÙÖØ·¢¸ÃÖ¡¡£½á¹ûÿ¸ö Ö¡¶¼±»·¢ËÍÁ½´Î¡£ 28. In protocol 6, MAX_SEQ = 2n - 1. While this condition is obviously desirable to make efficient use of header bits, we have not demonstrated that it is essential. Does the protocol work correctly for MAX_SEQ = 4, for example?£¨M£© ²»ÄÜ£¬ÐÒéµÄÔËÐн«»áʧ°Ü¡£µ± MaxSeq=4£¬ÐòÁкŵÄÄ£Êý=4+1=5£¬´°¿Ú´óС½« µÈÓÚ£ºNrBufs<=5/2=2.5£¬¼´µÃµ½£¬NrBufs=2¡£Òò´ËÔÚ¸ÃÐÒéÖУ¬Å¼ÊýÐòºÅʹÓûº³å Çø 1¡£ÕâÖÖÓ³ÉäÒâζ×ÅÖ¡ 4 ºÍ 0 ½«Ê¹ÓÃͬһ»º³åÇø¡£¼Ù¶¨ 0 ÖÁ 3 ºÅÖ¡¶¼ÕýÈ·ÊÕµ½ÁË£¬ ²¢ÇÒ¶¼È·ÈÏÓ¦´ðÁË£¬²¢ÇÒ¶¼È·ÈÏÓ¦´ðÁË¡£Èç¹ûËæºóµÄ 4 ºÅÖ¡¶ªÊ§£¬ÇÒÏÂÒ»¸ö 0 ºÅÖ¡ ÊÕµ½ÁË£¬Ð嵀 0 ºÅÖ¡½«±»·Åµ½»º³åÇø 0 ÖУ¬±äÁ¿ arrived[0]±»ÖóɨDÕæ¡¬¡£ÕâÑù£¬Ò»¸ö ʧÐòÖ¡½«±»Í¶µÝ¸øÖ÷»ú¡£ÊÂʵÉÏ£¬²ÉÓÃÑ¡ÔñÐÔÖØ´«µÄ»¬¶¯´°¿ÚÐÒéÐèÒª MaxSeq ÊÇ ÆæÊý²ÅÄÜÕýÈ·µÄ¹¤×÷¡£È»¶øÆäËûµÄ»¬¶¯´°¿ÚÐÒéµÄʵÏÖ²¢²»¾ßÓÐÕâÒ»ÐÔÖÊ¡£ 29. Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite whose propagation time from the earth is 270 msec. Acknowledgements are always piggybacked onto data frames. The headers are very short. Three-bit sequence numbers are used. What is the maximum achievable channel utilization ·¢ËÍ£¬ µÄ·¢ËÍʱ¼äΪ 1ms¡£ÎÒÃÇÓà t=0 ±íʾ´«Ê俪ʼµÄʱ¼ä£¬ÄÇôÔÚ t=1ms ʱ£¬µÚÒ»Ö¡·¢ ËÍÍê±Ï£»t=271ms ʱ£¬µÚÒ»Ö¡ÍêÈ«µ½´ï½ÓÊÕ·½£»t=272ms£¬¶ÔµÚÒ»Ö¡µÄÈ·ÈÏÖ¡·¢ËÍÍê ±Ï£»t=542ms£¬´øÓÐÈ·ÈϵÄÖ¡ÍêÈ«µ½´ï·¢ËÍ·½¡£Òò´ËÒ»¸ö·¢ËÍÖÜÆÚΪ 542ms¡£Èç¹ûÔÚ 542ms ÄÚ¿ÉÒÔ·¢ËÍ k ¸öÖ¡£¬ÓÉÓÚÿһ¸öÖ¡µÄ·¢ËÍʱ¼äΪ 1ms£¬ÔòÐŵÀÀûÓÃÂÊΪ k/542£¬ Òò´Ë£º £¨a£© k=1£¬×î´óÐŵÀÀûÓÃÂÊ=1/542=0.18% £¨b£© k=7£¬×î´óÐŵÀÀûÓÃÂÊ=7/542=1.29% £¨c£© k=4£¬×î´óÐŵÀÀûÓÃÂÊ=4/542=0.74% µÚÒ»Ö¡ ·¢ËÍÍê±Ï£» t=270+80=350ms£¬µÚÒ»Ö¡ÍêÈ«µ½´ï½ÓÊÕ·½£»t=350+80=430ms£¬¶ÔµÚÒ»Ö¡×÷ÉÓ´øÈ· Èϵķ´ÏòÊý¾ÝÖ¡¿ÉÄÜ·¢ËÍÍê±Ï£»t=430+270=700ms£¬´øÓÐÈ·Èϵķ´ÏòÊý¾ÝÖ¡ÍêÈ«µ½ ´ï·¢ËÍ·½¡£Òò´Ë£¬ÖÜÆÚΪ 700ms£¬·¢ËÍ 128 ֡ʱ¼ä 80*128=10240ms£¬ÕâÒâζ×Å´« Êä¹ÜµÀ×ÜÊdzäÂúµÄ¡£Ã¿¸öÖ¡ÖØ´«µÄ¸ÅÂÊΪ 0.01£¬¶ÔÓÚ 3960 ¸öÊý¾Ýλ£¬Í·¿ªÏúΪ 40 λ£¬Æ½¾ùÖØ´«µÄλÊýΪ 4000*0.01=40 룬´«ËÍ NAK µÄƽ¾ùλÊýΪ 40*1/100=0.40 룬ËùÒÔÿ 3960 ¸öÊý¾ÝλµÄ×Ü¿ªÏúΪ 80.4 λ¡£ Òò´Ë£¬¿ªÏúËùÕ¼µÄ´ø¿í±ÈÀýµÈÓÚ 80.4/(3960+80.4)=1.99%¡£ 31. Consider an error-free 64-kbps satellite channel used to send 512-byte data frames in one direction, with very short acknowledgements coming back the other way. What is the maximum throughput for window sizes of 1, 7, 15, and 127? The earth-satellite propagation time is 270 msec.£¨M£© 30. Compute the fraction of the bandwidth that is wasted on overhead (headers and retransmissions) for protocol 6 on a heavily-loaded 50-kbps satellite channel with data frames consisting of 40 header and 3960 data bits. Assume that the signal ʹÓÃÎÀÐÇÐŵÀ¶Ëµ½¶ËµÄ´«ÊäÑÓ³ÙΪ 270ms£¬ÒÔ 64kb/s ·¢ËÍ£¬ÖÜÆÚµÈÓÚ propagation time from the earth to the satellite is 270 msec. ACK frames never 604ms¡£·¢ occur. NAK frames are 40 bits. The error rate for data frames is 1 percent, and the ËÍÒ»Ö¡µÄʱ¼äΪ 64ms£¬ÎÒÃÇÐèÒª 604/64=9 ¸öÖ¡²ÅÄܱ£³ÖͨµÀ²»¿Õ¡£ error rate for NAK frames is negligible. The sequence numbers are 8 bits.£¨M£© ·¢ËÍ 4096 룬ÍÌÍÂÂÊΪ ʹÓÃÑ¡ÔñÐÔÖØ´«»¬¶¯´°¿ÚÐÒ飬ÐòÁкų¤¶ÈÊÇ 8 λ¡£´°¿Ú´óСΪ 128¡£ÎÀÐÇÐŶÔÓÚ´°¿ÚÖµ 1£¬Ã¿ 604ms µÀ ¶Ëµ½¶ËµÄ´«ÊäÑÓ³ÙÊÇ 270ms¡£ÒÔ 50kb/s µÄ·¢ ËÍʱ¼äÊÇ 0.02*4000=80ms¡£ÎÒÃÇÓà t=0 4096/0.604=6.8kb/s¡£ ·¢ËÍ 4096*7 룬ÍÌÍÂÂÊΪ ·¢ËÍ£¬4000bit£¨3960+40£©³¤µÄÊý¾ÝÖ¡¶ÔÓÚ´°¿ÚÖµ 7£¬Ã¿ 604ms 4096*7/0.604=47.5kb/s¡£ ±íʾ´«Ê俪ʼʱ¼ä£¬ÄÇô£¬t=80ms£¬¶ÔÓÚ´°¿ÚÖµ³¬¹ý 9£¨°üÀ¨ 15¡¢127£©£¬ÍÌÍÂÂÊ´ïµ½×î´óÖµ£¬¼´ 64kb/s¡£ - 11 - 32. A 100-km-long cable runs at the T1 data rate. The propagation speed in the cable is 2/3 the speed of light in vacuum. How many bits fit in the cable?£¨E£© ÔڸõçÀÂÖеĴ«²¥ËÙ¶ÈÊÇÿÃëÖÓ 200 000km£¬¼´Ã¿ºÁÃë 200km£¬Òò´Ë 100km T1 Ö¡£¬¼´ 193*4=772bit¡£ 33. Suppose that we model protocol 4 using the finite state machine model. How many states exist for each machine? How many states exist for the communication channel? How many states exist for the complete system (two machines and the channel)? Ignore the checksum errors.£¨M£© ÿ̨»úÆ÷¶¼ÓÐÁ½¸ö¹Ø¼üµÄ±äÁ¿ next3frame3to3send and frame3expected£¬Ã¿¸ö¶¼¿É ÒÔȡֵ 0 »ò 1¡£Òò´Ë£¬Ã¿Ì¨»úÆ÷¶¼ÓÐËÄÖÖ¿ÉÄܵÄ״̬¡£ÔÚÐŵÀÉϵÄÒ»¸öÏûÏ¢°üº¬ÁË Òª±»·¢Ë͵ÄÖ¡µÄÐòÁкźͱ»È·ÈϵÄÖ¡µÄÐòÁкš£Òò´Ë£¬´æÔÚËÄÖÖÀàÐ͵ÄÏûÏ¢¡£ÐŵÀ µÄµç À½«»áÔÚ 0.5ms ÄÚÌîÂú¡£T1 ËÙÂÊ 125 ´«ËÍÒ»¸ö 193 λµÄÖ¡£¬0.5ms ¿ÉÒÔ´«ËÍ 4 ¸ö ¼¤·¢ÐòÁÐÊÇ 10£¬6£¬2£¬8¡£ËüͨÐÅÈ¥½ÓÊÕÒ»¸öżÊý£¬È·È϶ªÊ§£¬·¢ËÍÕß³¬Ê±£¬²¢ ÇÒÖØÐÂÓɽÓÊÕÕßÉú³ÉÈ·ÈÏ¡£ 35. Given the transition rules AC¨¤B, B¨¤AC, CD¨¤E, and E¨¤CD, draw the Petri net described. From the Petri net, draw the finite state graph reachable from the initial state ACD. What well-known concept do these transition rules model?(E) ¿ÉÄÜÔÚÿ¸ö·½ÏòÉÏÓÐ 0 »ò 1 ÌõÏûÏ¢¡£ËùÒÔ£¬ÐŵÀÉÏ״̬µÄÊýÁ¿ÊÇ´ø×Å 0 ÌõÏûÏ¢µÄ 1 ¸ö£¬´ø×Å 1 ÌõÏûÏ¢µÄ 8 ¸ö£¬´ø×Å 2 ÌõÏûÏ¢µÄ 16 ¸ö (ÿ¸ö·½ÏòÉÏÖ»ÓÐÒ»ÌõÏûÏ¢)¡£ ×ܹ²ÓÐ 1 + 8 + 16 = 25 ÖÖ¿ÉÄܵÄÐŵÀ״̬¡£¶ÔÍêÕûµÄϵͳÕâÒþº¬ÁË 4*4*25 =400 ÖÖ¿ÉÄܵÄ״̬¡£ 34. Give the firing sequence for the Petri net of Fig. 3-23 corresponding to the state sequence (000), (01A), (01¡ª), (010), (01A) in Fig. 3-21. Explain in words what the sequence represents.£¨M£© Petri ÍøºÍ״̬ͼÈçÏ ϵͳģÐÍÊÇ»¥³âµÄ¡£ B ºÍ E Êǹؼü¶ÎËüÃDz»ÄÜͬʱ±»¼¤»î£¬ÀýÈç²»ÔÊÐí״̬ BE£¬ λÖà C ´ú±íÒ»¸ö·ûºÅËü¿ÉÒÔ±» A »ò D ÍÆ³ö£¬µ«ÊDz»ÄÜͬʱ±» AD ÍÆ³ö¡£ ±¾ÌâÊǹØÓÚ Petri ÍøµÄ£¬¸ù¾ÝÌâÄ¿µÄÃèÊö£¬Ó¦¸ÃÊÇ B ÍÆ³ö C£¬E ÍÆ³ö C£¬ËùÒÔ´ð°¸ µÄͼ¼ýÍ·Ó¦¸ÃÓÉ B¡¢E Ö¸Ïò C¡£ - 12 - Chapter 4 The Medium Access Control Sublayer Problems e. (b) What is the probability of exactly k collisions and then a success? f. (c) What is the expected number of transmission attempts needed?£¨M£© 1. For this problem, use a formula from this chapter, but first state the formula. Frames arrive randomly at a 100-Mbps channel for transmission. If the channel is £¨a£©ÔÚÈÎһ֡ʱ¼äÄÚÉú³É k Ö¡µÄ¸ÅÂÊ·þ´Ó²´ËÉ·Ö²¼ busy when a frame arrives, it waits its turn in a queue. Frame length is exponentially distributed with a mean of 10,000 bits/frame. For each of the following Éú³É 0 Ö¡µÄ¸ÅÂÊΪ e-G£»¶ÔÓÚ´¿µÄ ALOHA£¬·¢ËÍÒ»Ö¡µÄ³åͻΣÏÕÇøÎªÁ½¸ö֡ʱ£¬ frame arrival rates, give the delay experienced by the average frame, including both ÔÚÁ½Ö¡ÄÚÎÞÆäËûÖ¡·¢Ë͵ĸÅÂÊÊÇ e-G¡Áe ¨CG=e-2G£»¶ÔÓÚ·Ö϶µÄ ALOHA£¬ÓÉÓÚ³åͻΣÏÕ queueing time and transmission time.£¨E£© Çø¼õÉÙΪÔÀ´µÄÒ»°ë£¬ÈÎһ֡ʱÄÚÎÞÆäËûÖ¡·¢Ë͵ĸÅÂÊÊÇ e-G¡£ a. (a) 90 frames/sec. b. (b) 900 frames/sec. c. (c) 9000 frames/sec. ÅŶÓÀíÂÛÑÓ³Ùʱ¼ä¹«Ê½£º £¬ÕâÀïÐŵÀÈÝÁ¿ C=108 and £¬ËùÒÔ ÏÖÔÚʱ϶³¤¶ÈΪ 40ms£¬¼´Ã¿Ãë 25 ¸öʱ϶£¬²úÉú 50 ´ÎÇëÇó£¬ ËùÒÔÿ¸öʱ϶²úÉú Á½¸öÇëÇó£¬G=2¡£Òò´Ë£¬Ê״γ¢ÊԵijɹ¦ÂÊÊÇ£ºe-2= 1/ e2 £¨b£© £¨c£©³¢ÊÔ k ´Î³åÍ»£¬µÚ k ´Î²ÅÄÜ·¢Ëͳɹ¦µÄ¸ÅÂÊ£¨¼´Ç° k-1´Î²Å³É¹¦£©Îª£º sec£¬¶ÔÉÏÃæµÄÈýÖÖÖ¡µ½´ïÂÊ?£¬ÓÐ (a) 0.1 msec,(b) 0.11 msec, (c) 1 msec. ¶ÔÓÚ (c)£¬ 10 ±¶ÑÓ³Ù¡£ ÓÉ sec. What is the approximate total channel load?£¨E£© 2. A group of N stations share a 56-kbps pure ALOHA channel. Each station ¦Ìoutputs a 1000-bit frame on an average of once every 100 sec, even if the previous ÿ¸öÖÕ¶Ëÿ 200£¨=3600/18£©Ãë×öÒ»´ÎÇëÇó£¬×ܹ²ÓÐ 10 000 ¸öÖÕ¶Ë£¬Òò´Ë£¬×ÜµÄ Ãë×ö 10000 ´ÎÇëÇ󡣯½¾ùÿÃëÖÓ 50 ´ÎÇëÇó¡£Ã¿one has not yet been sent (e.g., the stations can buffer outgoing frames). What is ¸ºÔØÊÇ 200 ÃëÖÓ 8000 ¸öʱ϶£¬Ëù the ÒÔÆ½¾ùÿ¸öʱ϶µÄ·¢ËÍ´ÎÊýΪ 50/8000=1/160¡£ maximum value of N?£¨E£© 5. A large population of ALOHA users manages to generate 50 requests/sec, ¶ÔÓÚ´¿µÄ ALOHA£¬ÐŵÀÀûÓÃÂÊΪ 1/e2= 0.184£¬¿ÉÓõĴø¿íÊÇ 0.184¡Á56 Kb/s=10.304Kb/ s¡£Ã¿¸öÕ¾ÐèÒªµÄ´ø¿íΪ 1000/100=10b/s¡£¶øN=10304/10¡Ö1030 including both originals and retransmissions. Time is slotted in units of 40 msec. d. (a) What is the chance of success on the first attempt? ËùÒÔ£¬×î¶à¿ÉÒÔÓÐ 1030 ¸öÕ¾£¬¼´ N µÄ×î´óֵΪ 1030¡£ 3. Consider the delay of pure ALOHA versus slotted ALOHA at low load. Which one is less? Explain your answer.£¨E£© ¶ÔÓÚ´¿µÄ ALOHA£¬·¢ËÍ¿ÉÒÔÁ¢¼´¿ªÊ¼¡£¶ÔÓÚ·Ö϶µÄ ALOHA£¬Ëü±ØÐëµÈ´ýÏÂÒ»¸ö ʱ϶¡£ÕâÑù£¬Æ½¾ù»áÒýÈë°ë¸öʱ϶µÄÑÓ³Ù¡£Òò´Ë£¬´¿ ALOHA С¡£ µÄÑӳٱȽÏ4. Ten thousand airline reservation stations are competing for the use of a single slotted ALOHA channel. The average station makes 18 requests/hour. A slot is 125 7. In an infinite-population slotted ALOHA system, the mean number of slots a ÄÇôÿ֡´«ËÍ´ÎÊýµÄÊýѧÆÚÍûΪ 6. Measurements of a slotted ALOHA channel with an infinite number of station waits between a collision and its retransmission is 4. Plot the delay versus throughput curve for this system.£¨M£© users show that 10 percent of the slots are idle. g. (a) What is the channel load, G? h. (b) What is the throughput? i. (c) Is the channel underloaded or overloaded?(E) £¨a£©´Ó²´Ëɶ¨Âɵõ½ p0= e ¨CG £¬Òò´Ë G = - lnp0 = - ln0.1 = 2.3 £¨b£© S = G e-G£¬ G = 2.3£¬e ¨CG=0.1 £¬S = 2.3*0.1 = 0.23 £¨c£©ÒòΪÿµ± G>1 ʱ£¬ÐŵÀ×ÜÊǹýÔØµÄ£¬Òò´ËÔÚÕâÀïÐŵÀÊǹýÔØ µÄ¡£ ÿ֡´«ËÍ´ÎÊýµÄÊýѧÆÚÍûΪ£º E ¸öʼþΪ E-1 ¸ö³¤¶ÈµÈÓÚ 4 ¸öʱ϶µÄ¼ä¸ôʱ¼äËù·Ö¸ô¡£Òò´ËÒ» ¸öÖ¡´ÓµÚÒ»´Î ·¢ËÍ¿ªÊ¼Ê±¼äµ½×îºóÒ»´Î³¢ÊԳɹ¦µÄ·¢ËÍ¿ªÊ¼Ê±¼äÖ®¼äµÄ³¤¶È¼´ÑÓ³ÙÊÇ 4(eG1)£¬ÍÌ ÍÂÂÊ S= Ge-G¡£ ¶ÔÓÚÿһ¸ö G Öµ£¬¶¼¿ÉÒÔ¼ÆËã³ö¶ÔÓ¦µÄÑÓ³ÙÖµ D=4(eG-1)£¬ÒÔ¼°ÍÌÍÂÂÊÖµ S=Ge-G ¡£ - 13 - are needed to resolve the contention?£¨E£© 8. How long does a station, s, have to wait in the worst case before it can start ÔÚ×ÔÊÊÓ¦Ê÷±éÀúÐÒéÖУ¬¿ÉÒÔ°ÑÕ¾µã×éÖ¯³É¶þ²æÊ÷£¨¼ûͼ£©µÄÐÎʽ¡£ÔÚÒ»´Î³É¹¦ transmitting its frame over a LAN that uses µÄ´«ÊäÖ®ºó£¬ÔÚµÚÒ»¸ö¾ºÕùʱ϶ÖУ¬È«²¿Õ¾¶¼¿ÉÒÔÊÔͼ»ñµÃÐŵÀ£¬Èç¹û½öÆäÖÐÖ®Ò» ÐèÓÃÐŵÀ£¬Ôò·¢ËͳåÍ»£¬ÔòµÚ¶þʱ϶ÄÚÖ»ÓÐÄÇЩλÓÚ½Úµã B ÒÔϵÄÕ¾£¨0j. (a) the basic bit-map protocol? µ½ 7£©¿É k. (b) Mok and Ward's protocol with permuting virtual station numbers? ÒԲμӾºÕù¡£ÈçÆäÖÐÖ®Ò»»ñµÃÐŵÀ£¬±¾Ö¡ºóµÄʱ϶Áô¸øÕ¾µã C ÒÔϵģ¨M£© Õ¾£»Èç¹û B µã (a) The worst case is: all stations want to send and s is the lowest numbered station. Wait time N bit contention period + (N-1)d bit for transmission of frames. The total is N+(N-1)dbit times. (b) The worst case is: all stations have frames to transmit and s has the lowest virtual station number. Consequently, s will get its turn to transmit after the other N-1 stations have transmitted one frame each, and N contention periods of size log2 N each. Wait time is thus(N+1)¡Á\‘@2Xd+N¡Álog2 bits. µ±¾ºÕùÖÜÆÚ¸Õ¸ÕɨÃé¹ýµÄʱºò£¬N ºÅÕ¾µãÕýºÃÓÉÊý¾Ý·¢ËÍ£¬ËùÒÔËûÒªµÈµ½Êý¾Ý 1 ·¢ËÍÍ꣨×î²îÊ±Ç°Ãæ N-1 ¸öÕ¾µã¶¼ÓÐÊý¾ÝÒª·¢£¬¼´£¨N-1£©*d£©,È»ºóÏÂÒ»¸öɨÃèÖÜ ÆÚ£¨N 룩£¬ÔÙµÈÇ°ÃæËùÓÐÕ¾µã·¢ËÍÍêÊý¾Ý£»ËùÒÔ×ܵÄÑÓ³ÙΪ£º £¨N-1£©*d+N+(N-1)*d=2£¨N-1£©*d+N ; 9. A LAN uses Mok and Ward's version of binary countdown. At a certain instant, the ten stations have the virtual station numbers 8, 2, 4, 5, 1, 7, 3, 6, 9, and 0. The next three stations to send are 4, 3, and 9, in that order. What are the new virtual station numbers after all three have finished their transmissions?£¨E£© µ± 4 Õ¾·¢ËÍʱ£¬ËüµÄºÅÂë±äΪ 0£¬¶ø 0¡¢1¡¢2 ºÍ 3 ºÅÕ¾ µÄºÅÂë¶¼Ôö 1£¬10 ¸öÕ¾ µãµÄÐéÕ¾ºÅ±äΪ 8£¬3£¬0£¬5£¬2£¬7£¬4£¬6£¬9£¬1 µ± 3 Õ¾·¢ËÍʱ£¬ËüµÄºÅÂë±äΪ 0£¬¶ø 0¡¢1 ºÍ 2 Õ¾µÄºÅÂë¶¼ Ôö 1£¬10 ¸öÕ¾µãµÄÐé Õ¾ºÅ±äΪ£º8£¬0£¬1£¬5£¬3£¬7£¬4£¬6£¬9£¬2 ×îºó£¬µ± 9 Õ¾·¢ËÍʱ£¬Ëü±ä³É 0£¬ËùÓÐÆäËûÕ¾¶¼Ôö 1£¬½á¹ûÊÇ£º9£¬1£¬2£¬6£¬4£¬ °´´Ë·½·¨¼´¿É»³öʱÑÓ¶ÔÍÌÍÂÂʵÄÇúÏß¡£ 8£¬5£¬7£¬0£¬3¡£ 10. Sixteen stations, numbered 1 through 16, are contending for the use of a shared channel by using the adaptive tree walk protocol. If all the stations whose addresses are prime numbers suddenly become ready at once, how many bit slots ÏÂÃæÓÐÁ½¸ö»ò¸ü¶àµÄվϣÍû·¢ËÍ£¬ÔÚµÚ¶þʱ϶ÄڻᷢÉú³åÍ»£¬ÓÚÊǵÚÈýʱ϶ÄÚÓÉ D ½ÚµãÒÔϸ÷Õ¾À´¾ºÕùÐŵÀ¡£ µÄʱ϶ÊýÈ¡¾öÓÚΪÁ˵½´ï×¼±¸ºÃ·¢Ë͵ÄÁ½¸öÕ¾µÄ¹²Í¬Ïȱ²µã±ØÐëÍù»Ø×ß¶àÉÙ¼¶¡£ÏÈ ¼ÆËãÕâÁ½¸öÕ¾¾ßÓй²Í¬µÄ¸¸½ÚµãµÄ¸ÅÂÊ p1¡£ÔÚ 2n¸öÕ¾ÖУ¬Òª·¢Ë͵ÄÁ½¸öÕ¾¹²ÏíÒ»¸ö Ö¸¶¨µÄ¸¸½ÚµãµÄ¸ÅÂÊÊÇ - 14 - ±¾ÌâÖУ¬Õ¾ 2¡¢3¡¢5¡¢7¡¢11 ϶£¬Ã¿¸öʱ϶ÄڲμӾº ÕùµÄÕ¾µÄÁбíÈçÏ£º µÚһʱ϶£º2¡¢3¡¢5¡¢7¡¢11¡¢13 µÚ¶þʱ϶£º2¡¢3¡¢5¡¢7 µÚÈýʱ϶£º2¡¢3 µÚËÄʱ϶£º2 µÚÎåʱ϶£º3 µÚÁùʱ϶£º5¡¢7 µÚÆßʱ϶£º5 µÚ°Ëʱ϶£º7 µÚ¾Åʱ϶£º11¡¢13 µÚʮʱ϶£º11 µÚʮһʱ϶£º13 ºÍ 13 Òª·¢ËÍ£¬ÐèÒª 11 ¸öʱ 11. A collection of 2n stations uses the adaptive tree walk protocol to arbitrate access to a shared cable. At a certain instant, two of them become ready. What are the minimum, maximum, and mean number of slots to walk the tree if 2n >>1?£¨H£© 2 n¸öÕ¾µã¶ÔÓ¦ n+1 ¼¶£¬ÆäÖÐ 0 ¼¶ÓÐ 1 ¸ö½Úµã£¬1 ¼¶ÓÐ 2 ¸ö½Úµã£¬ n ¼¶ÓÐ 2 n¸ö ½Úµã¡£ÔÚ i ¼¶µÄÿ¸ö½ÚµãÏÂÃæËù°üÀ¨µÄÕ¾µÄ¸öÊýµÈÓÚ×ÜÕ¾ÊýµÄ 1/2i¡£±¾ÌâÖÐËùÐèÒª 12. The wireless LANs that we studied used protocols such as MACA instead of ×ܹ² 2 n-1 ¸ö¸¸½Úµã£¬ËùÒÔ£¬ using CSMA/CD. Under what conditions, if any, would it be possible to use CSMA/CD instead?(E) ÒòΪ 2n >>1£¬ËùÒÔ p¡Ö2- n ÔÚ¹²Ïí¸¸½ÚµãµÄÌõ¼þϱéÀúÊ÷£¬´ÓµÚ¶þ¼¶¿ªÊ¼Ã¿Ò»¼¶·ÃÎÊÁ½¸ö½Úµã£¬ÕâÑù±éÀúÊ÷ Èç¹ûËùÓÐÕ¾µÄ·¢ÉäÓÐЧ·¶Î§¶¼ºÜ´ó£¬ÒÔÖÁÓÚÈÎÒ»Õ¾¶¼¿ÉÒÔÊÕµ½ËùÓÐÆäËûÕ¾·¢Ë굀 Ëù×ß¹ýµÄ½Úµã×ÜÊý n1= 1+2+¡+2+2=1=2n£¬½ÓÏÂÀ´£¬ÎÒÃÇ¿¼²ìÁ½¸ö·¢ËÍÕ¾¹²Ïí׿¸¸ Ðźţ¬ÄÇôÈÎÒ»Õ¾¶¼¿ÉÒÔÓëÆäËûÕ¾ÒԹ㲥·½Ê½Í¨ÐÅ¡£ÔÚÕâÑùµÄÌõ¼þÏ£¬CSMA/CD ¿É ½ÚµãµÄ¸ÅÂÊ p2ºÍ±éÀúÊ÷Ëù×ß¹ýµÄ½Úµã×ÜÊý n2¡£´ËʱÔÚÿ¸ö¸¸½ÚµãÏÂÃæ½ö¿ÉÄÜÓÐÒ» ÒÔ¹¤×÷µÄºÜºÃ¡£ ¸ö Õ¾·¢ËÍ¡£Á½¸ö·¢ËÍÕ¾¹²ÏíÒ»¸öÖ¸¶¨µÄ׿¸¸½ÚµãµÄ¸ÅÂÊÊÇ 1/ C22n-1¡£ ¹²ÓÐ 2n-2 ¸ö׿¸¸½Úµã ±éÀúÊ÷±È 1 n ¼õÉÙÁ½¸ö½Úµã£¬¼´ ¼¶×æÏÈ 13. What properties do the WDMA and GSM channel access protocols have in common? See Chap. 2 for GSM. (E) Á½ÖÖÐÒ鶼ʹÓà FDM ºÍ TDM ½áºÏµÄ·½·¨£¬ËüÃǶ¼¿ÉÒÔÌṩרÓÃµÄÆµµÀ£¨²¨³¤£©£¬ ²¢ÇÒ¶¼»®·Öʱ϶£¬ÊµÏÖ TDM¡£ 14. Six stations, A through F, communicate using the MACA protocol. Is it possible that two transmissions take place simultaneously? Explain your answer.(E) Êǵġ£ÏëÏñÒ»ÏÂËüÃǶ¼ÔÚÒ»ÌõÖ±ÏßÉϲ¢ÇÒÿ¸öÕ¾¶¼Ö»ÄÜÁ¬µ½Ëü×î½üµÄÁÚ¾Ó£¬ÄÇô A ¿ÉÒÔ·¢Ë͸ø B ͬʱ E Õý·¢Ë͸ø F ͨ¹ýÀàËÆµÄ·ÖÎöºÍ¼ÆË㣬¿ÉÒԵõ½£¬Á½¸ö·¢ËÍÕ¾¹²ÏíÔø×æ¸¸½Úµã£¨Êô n-3 ½Úµã£©µÄ¸ÅÂÊÊÇ p3= 2-n+2 ±éÀúÊ÷Ëù¾¹ýµÄ½Úµã×ÜÊý±È n2ÓÖÉÙÁ½¸ö½Úµã£¬ 15. A seven-story office building has 15 adjacent offices per floor. Each office contains a wall socket for a terminal in the front wall, so the sockets form a rectangular grid in the vertical plane, with a separation of 4 m between sockets, both horizontally and vertically. Assuming that it is feasible to run a straight cable between any pair of sockets, horizontally, vertically, or diagonally, how many Òò´Ë£¬×µÄÇéÐÎÊÇ 2n+1 ¸öʱ϶£¨¹²Ïí¸¸½Úµã£©£¬¶ÔÓ¦ÓÚ i=0£» ×îºÃµÄÇéÐÎÊÇ 3 ¸öʱ϶£¬¶ÔÓ¦ÓÚ i=n-1 £¨Á½¸ö·¢ËÍÕ¾·Ö±ðλÓÚ×ó°ëÊ÷ºÍÓÒ°ëmeters of cable are needed to connect all sockets using Ê÷£©£¬ l. (a) a star configuration with a single router in the middle? m. (b) an 802.3 LAN? (E) (a) ´ÓÒ»µ½Æß²ã¼ÇÊý¡£ÔÚÐÇÐÎÅäÖÃÖУ¬Â·ÓÉÆ÷ÔÚµÚËIJãÖÐÑë¡£ÐèÒªÍÏßµÄÕ¾¸öÊý 7 ËùÒÔÆ½¾ùʱ϶ÊýµÈÓÚ *15 ¨C 1=104 sites. ÕâЩÍÏßµÄ×ܳ¤¶È =1832 meters. £¬×ܹ² ¸Ã±í´ïʽ¿ÉÒÔ¼ò»¯Îª (b) ¶Ô 802.3, 7 ˮƽÍÏßÿ²ãÐèÒª 56 m ³¤£¬¼ÓÉÏÊúÖ±·½ÏòµÄ¹² 24 m 416 m. 16. What is the baud rate of the standard 10-Mbps Ethernet?£¨E£© ×îСΪ 3 ¸ö£¬×î´óΪ n+2 ¸ö£¬¸ø³öµÄ´ð°¸×î´ó²»¶Ô¡£ ×î´óµÄÇé¿öΪÁ½¸öÕ¾µãÐֵܣ¬¹²¸¸Ä¸¡£ Á½¸ö»ÆÉ«µÄÔ°´ú±íÒª·¢Êý¾ÝµÄÕ¾µã ËùÒÔÔÚÕâÖÖÇé¿öϵÄʱ²ÛΪ£ºÊýµÄ·¾¶³¤¶È¼Ó 2 ¼´£º n+2 ÒÔÌ«ÍøÊ¹ÓÃÂü³¹Ë¹ÌرàÂ룬Õâ¾ÍÒâζ×Å·¢Ë͵Äÿһλ¶¼ÓÐÁ½¸öÐźÅÖÜÆÚ¡£±ê×¼ÒÔ Ì«ÍøµÄÊý¾ÝÂÊΪ 10Mb/s£¬Òò´Ë²¨ÌØÂÊÊÇÊý¾ÝÂʵÄÁ½±¶£¬¼´ 20MBaud¡£ 17. Sketch the Manchester encoding for the bit stream: 0001110101.(E) ÐźÅÊÇÒ»¸ö¶þÖ²·½²¨¸ß (H) ºÍ µÍ(L)£¬ÐÎʽΪ LHLHLHHLHLHLLHHLLHHL. 18. Sketch the differential Manchester encoding for the bit stream of the previous problem. Assume the line is initially in the low state.(E) - 15 - ¶ÔÓÚ 1km µçÀ£¬µ¥³Ì´«²¥Ê±¼äΪ 1/200000=5¡Á10-6 s=5 £¬Íù·µ´«²¥Ê±¼äΪ 2t ¹¤×÷£¬×îС֡19. A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of =10 ¡£ÎªÁËÄܹ»°´ÕÕ CSMA/CD ¡£ÒÔ 1Gb/s 200 m/¦Ìsec. Repeaters are not allowed in this system. Data frames are 256 bits long, µÄ·¢Éäʱ¼ä²»ÄÜСÓÚ 10 -6-9 including 32 bits of header, checksum, and other overhead. The first bit slot after a ËÙÂʹ¤×÷£¬10 ¿ÉÒÔ·¢Ë͵ıÈÌØÊýµÈÓÚ£º£¨10*10£©/£¨1*10£©=10000 Òò´Ë£¬×îС֡ÊÇ 10000 bit = 1250 ×Ö½Ú³¤¡£ successful transmission is reserved for the receiver to capture the channel in order to send a 32-bit acknowledgement frame. What is the effective data rate, excluding 22. An IP packet to be transmitted by Ethernet is 60 bytes long, including all its overhead, assuming that there are no collisions?(M) headers. If LLC is not in use, is padding needed in the Ethernet frame, and if so, -6ÒÀÌâÖªÒ»¹«ÀïµÄÔÚÍÀÂÖе¥³Ì´«²¥Ê±¼äΪ 1/200000=5¡Á10 s=5 usec£¬Íù·µ´«²¥Ê± how many bytes?(E) ¼äΪ 2t =10 usec£¬Ò»´ÎÍêÕûµÄ´«Êä·ÖΪ 6 ²½£º ×îСµÄÒÔÌ«ÍøÖ¡ÊÇ 64 bytes£¬°üº¬ÁËÒÔÌ«ÍøµØÖ·Ö¡Í·£¬ÀàÐÍ/³¤¶ÈÓò£¬ÒÔ¼°Ð£Ñé·¢ËÍÕßÕìÌýÍÀÂʱ¼äΪ 10usec£¬ÈôÏß·¿ÉÓà ·¢ËÍÊý¾ÝÖ¡´«Êäʱ¼äΪ 256 bits / 10Mbps = 25.6 usec Êý¾ÝÖ¡×îºóһλµ½´ïʱµÄ´«²¥ÑÓ³Ùʱ¼äΪ 5.0usec ½ÓÊÕÕßÕìÌýÍÀÂʱ¼äΪ 10 usec£¬ÈôÏß·¿ÉÓà ºÍ¡£ ÓÉÓÚÖ¡Í·ÓòÕ¼Óà 18 bytes£¬²¢ÇÒ·Ö×éÊÇ 60 bytes£¬×ÜÖ¡³¤ÊÇ 78 bytes£¬ÕâÒѾ³¬¹ýÁË 64-byte µÄ×îСÏÞÖÆ¡£ Òò´Ë£¬²»±ØÔÙÌî³ä z ÁË¡£ ÐÎʽΪ HLHLHLLHHLLHLHHLHLLH. 23. Ethernet frames must be at least 64 bytes long to ensure that the transmitter is still going in the event of a collision at the far end of the cable. Fast Ethernet has the ½ÓÊÕÕß·¢ËÍÈ·ÈÏÖ¡ÓÃʱ 3.2 usec same 64-byte minimum frame size but can get the bits out ten times faster. How is it È·ÈÏÖ¡×îºóһλµ½´ïʱµÄ´«²¥ÑÓ³Ùʱ¼äΪ 5.0 usec possible to maintain the same minimum frame size?(E) ×ܹ² 58.8sec£¬ÔÚÕâÆÚ¼ä·¢ËÍÁË 224 bits µÄÊý¾Ý£¬ËùÒÔÊý¾Ý´«ÊäÂÊΪ 3.8 Mbps. ½«¿ìËÙÒÔÌ«ÍøµÄµçÀ³¤¶ÈÖÁΪÒÔÌ«ÍøµÄ 1/10 ¼´¿É¡£ 20. Two CSMA/CD stations are each trying to transmit long (multiframe) files. 24. Some books quote the maximum size of an Ethernet frame as 1518 bytes After each frame is sent, they contend for the channel, using the binary exponential instead of 1500 bytes. Are they wrong? Explain your answer.£¨E£© backoff algorithm. What is the probability that the contention ends on round k, and ÒÔÌ«ÍøÒ»Ö¡ÖÐÊý¾ÝÕ¼ÓÃÊÇ 1500 bytes£¬µ«ÊǰÑÄ¿µÄµØµØÖ·£¬Ô´µØÖ·£¬ÀàÐÍ/³¤¶ÈÓò what is the mean number of rounds per contention period?(M) ÒÔ¼°Ð£ÑéºÍÓòÒ²ËãÉÏ£¬Ö¡×ܳ¤¾ÍΪ 1518 bytes °Ñ»ñµÃͨµÀµÄ³¢ÊÔ´Ó 1 ¿ªÊ¼±àºÅ¡£µÚ i ´Î³¢25. The 1000Base-SX specification states that the clock shall run at 1250 MHz, ÊÔ·Ö²¼ÔÚ 2i-1¸öʱ϶ÖС£Òò´Ë£¬i ´Î even though gigabit Ethernet is only supposed to deliver 1 Gbps. Is this higher speed ³¢ÊÔÅöײµÄ¸ÅÂÊÊÇ 2-(i-1)£¬¿ªÍ· k-1 ´Î³¢ÊÔʧ°Ü£¬½ô½Ó×ÅµÚ kto provide for an extra margin of safety? If not, what is going on here?(E) ´Î³¢ÊԳɹ¦µÄ¸ÅÂÊÊÇ£º ´«ÊäÊý¾ÝÓà 10 λÀ´±íʾ 8 λµÄÕæÊµÊý¾Ý£¬±àÂëµÄÀûÓÃÂÊÊÇ 80%£¬Ò»ÃëÖÓ¿ÉÒÔ ¼´£º ´« ËÍ 1250 mb µÄÊý¾Ý£¬Ï൱ÓÚ 125*106Âë×Ö¡£ λÓÐЧÊý¾Ý£¬Ëù ÒÔʵ¼ÊµÄÊý¾Ý´«ÊäÂÊÊÇ 1000 mb/sec. ÿ¸öÂë×Ö´ú±íµÄÊÇ 8ÉÏʽ¿É¼ò»¯Îª£º ËùÒÔÿ¸ö¾ºÕùÖÜÆÚµÄÆ½¾ù¾ºÕù´ÎÊýÊÇ¡Æ?kpk 26. How many frames per second can gigabit Ethernet handle? Think carefully and take into account all the relevant cases. Hint: the fact that it is gigabit Ethernet matters.(E) ×îСµÄÒÔÌ«ÍøÖ¡ÊÇ 64bytes = 512 bits£¬ËùÒÔÒÀÌâ 1 Gbps µÄ´ø¿í¿ÉµÃ 1,953,125 21. Consider building a CSMA/CD network running at 1 Gbps over a 1-km cable =2 with no repeaters. The signal speed in the cable is 200,000 km/sec. What is the *106 frames/sec£¬È»¶ø£¬ÕâÖ»ÊÇÔÚ³äÂú×îСµÄ֡ʱÊÇÕâÑù£¬Èç¹ûûÓгäÂúÖ¡£¬Ìî³ä¶Ì minimum frame size?(E) Ö¡ÖÁ 4096 bits£¬ÕâʱÿÃë´¦ÀíµÄÖ¡µÄ×î´óÊýÁ¿Îª 244,140 bytes£¬¶ÔÓÚ×î´óµÄÖ¡³¤ 12,144 bits£¬Ã¿Ãë´¦ÀíµÄÖ¡µÄ×î´óÊýÁ¿Îª 82,345 frames/sec. 27. Name two networks that allow frames to be packed back-to-back. Why is this feature worth having?(E) - 16 - ǧÕ×ÒÔÌ«ÍøºÍ 802.16 ¶¼ÓÐÕâ¸öÌØÐÔ¡£Õâ²»½ö¶ÔÓÚÌá¸ß´ø¿íµÄʹÓÃЧÂʺÜÓÐÓã¬Í¬ ʱ¶ÔÓÚÖ¡³¤µÄÒªÇóÏÞÖÆ²»¶à¡£ ÄÜҪ׼ȷ¼ÆËãÐèÒªµÄ´ø¿í¡£×îºó£¬×îºÃÑ¡Óù̶¨Î»ËÙÂÊ·þÎñ¡£ 32. Give two reasons why networks might use an error-correcting code instead of error detection and retransmission.£¨M£© 28. In Fig. 4-27, four stations, A, B, C, and D, are shown. Which of the last two Ò»¸öÔÒòÊÇʵʱ·þÎñÖÊÁ¿µÄÐèÒª£¬Èç¹û·¢ÏÖÁËÒ»¸ö´íÎ󣬲¢Ã»ÓÐʱ¼äÈ¥×öÖØ´«£¬ stations do you think is closest to A and why?(E) ±ØÐë¼ÌÐø´«ÏÂÈ¥£¬ÕâÀï¿ÉÒÔʹÓÃת·¢Ê±¾ÀÕý´íÎó¡£ÁíÒ»¸öÔÒòÔÚµÍÖÊÁ¿µÄÏß·ÉÏ£¨Àû ÓÃÎÞÏß´ø¿í£©£¬´íÎóÂÊÏ൱¸ß×îºóËùÓеÄÖ¡¶¼±ØÐëÖØ´«£¬²¢ÇÒÖØ´«Ê±¿ÉÄÜÒ²»á±»ÆÆ Õ¾ C ×î½Ó½ü A¡£ÒòΪ C ×îÏÈÌýµ½ A ·¢³öµÄ RTS ²¢ÇÒͨ¹ý²åÈëÒ»¸ö NAV ÐźÅ×÷ Ϊ»ØÓ¦¡£D ¶ÔÆäûÓлØÓ¦£¬ËµÃ÷Ëü²»ÔÚ A µÄƵÂÊ·¶Î§ÄÚ¡£ 29. Suppose that an 11-Mbps 802.11b LAN is transmitting 64-byte frames back-to-back over a radio channel with a bit error rate of 10-7. How many frames per second will be damaged on average?£¨E£© Ò»Ö¡ÊÇ 64bytes=512 bits£¬Î»³ö´íÂÊΪ p=10-7£¬ËùÓÐ 512 λÕýÈ·µ½´ïµÄ¸ÅÂÊΪ (1- p)512= 0.9999488£¬ËùÒÔÖ¡±»ÆÆ»µµÄ¸ÅÂÊԼΪ 5*10-5£¬Ã¿ÃëÖÓ·¢Ë͵ÄÖ¡ÊýΪ 11*106 /512 = 21,484frames/sec£¬½«ÉÏÁ½¸öÊý³Ëһϣ¬´óԼÿÃëÖÓÓÐÒ»Ö¡±»ÆÆ»µ¡£ 30. An 802.16 network has a channel width of 20 MHz. How many bits/sec can be sent to a subscriber station?£¨E£© ÕâÈ¡¾öÓÚÀë×ÓÕ¾ÓжàÔ¶¡£Èç¹û×ÓÕ¾¾ÍÔÚ¸½½ü£¬ÄÇôʹÓà QAM-64 ¿ÉµÃ´ø¿í 120 Mbps£»ÖеȾàÀëʱ£¬Ê¹Óà QAM-16 ¿ÉµÃ´ø¿í 80 Mbps£»Ô¶³Ì¾àÀ룬QPSK ¿ÉµÃ´ø¿í 40 Mbps. £¨ÔÌâ¸ø³öµÄÊÇ 20mhz µÄ´ø¿í£¬ÒªÇóµÄÊÇÊý¾ÝÂÊ£¬°´ÕÕÇ°ÃæµÄ Nyquist ¶¨Àí£¬×î ´óÊý¾ÝÂÊÓ¦¸ÃÊÇ£º2HlogN,µ«ÊÇ´ð°¸Ã»ÓгËÒÔ 2¡££© 31. IEEE 802.16 supports four service classes. Which service class is the best choice for sending uncompressed video?£¨E£© δѹËõµÄÊÓÆµÓÐÒ»¸ö¹Ì¶¨µÄλËÙÂÊ¡£Ã¿Ö¡¶¼ÓÐÓëǰһ֡ÏàͬµÄµãÊýÁ¿£¬Òò´Ë£¬¿É »µ¡£ÎªÁ˱ÜÃâÕâЩ£¬×ª·¢Ê±¾ÀÕý´íÎóÂëÓÃÓÚÌá¸ßµ½´ïµÄÖ¡µÄÕýÈ·ÂʵıÈÀý¡£ 33. From Fig. 4-35, we see that a Bluetooth device can be in two piconets at the same time. Is there any reason why one device cannot be the master in both of them at the same time?£¨M£© À¶ÑÀͬ 802.11 Ò»ÑùʹÓõÄÊÇ FHSS¡£×î´óµÄ²»Í¬ÔÚÓÚÀ¶ÑÀÿÃëµÄÌøÊýÊÇ 1600 hops£¬ Ô¶¿ìÓÚ 802.11 - 17 - Ò»¸öÉ豸²»¿ÉÄÜͬʱÊÇÁ½¸öÎ¢Î¢ÍøÖеÄÖ÷½Úµã¡£ÕâÑù»áÒýÆðÁ½¸öÎÊÌ⣺Ê×ÏÈ£¬Í· ²¿Ö»ÓÐÈýλµØÖ·¿ÉÓã¬Ã¿¸öÎ¢Î¢ÍøÓÐ 7 ¸ö´Ó½áµã£¬Òò´Ë£¬Ã¿¸ö´Ó½á½ÚûÓжÀÁ¢µÄµØ Ö·¡£Æä´Î£¬Æðʼ֡µÄ·ÃÎÊÂëÔ´ÓÚÖ÷½ÚµãµÄ±ê¼Ç·û£¬ÕâÊÇ×Ó½ÚµãÇø·ÖÏûÏ¢À´×ÔÓÚÄĸö Î¢Î¢Íø¡£Èç¹ûÁ½¸öÖØµþµÄÎ¢Î¢ÍøÊ¹ÓÃÏàͬµÄ·ÃÎÊÂ룬¾Í»áÇø·Ö²»³öÖ¡ÊÇÊôÓÚÄĸö΢ Î¢ÍøµÄ¡£Êµ¼ÊÉÏ£¬Á½¸öÎ¢Î¢Íø»áºÏ²¢µ½Ò»¸ö´óµÄÎ¢Î¢Íø¶ø²»ÊÇÏ໥¶ÀÁ¢µÄÁ½¸ö¡£ 34. Figure 4-25 shows several physical layer protocols. Which of these is closest to the Bluetooth physical layer protocol? What is the biggest difference between the two?£¨E£© 35. Bluetooth supports two types of links between a master and a slave. What are ±í they and what is each one used for?£¨E£© ACL ƵµÀÊÇÒì²½µÄ£¬Ëæ×Ų»¹æÔòµ½´ïµÄÖ¡²úÉúÊý¾Ý¡£ SCO ƵµÀÊÇͬ²½µÄ£¬Ëæ×ÅÖÜÆÚÐÔµ½´ïµÄÖ¡ÔËÐÐÔÚÒ»¸öÎȶ¨µÄËÙÂÊÏ¡£ 36. Beacon frames in the frequency hopping spread spectrum variant of 802.11 contain the dwell time. Do you think the analogous beacon frames in Bluetooth also contain the dwell time? Discuss your answer.£¨M£© ²»Êǵġ£ÔÚ 802.11 ÖÐÍ£ÑÓʱ¼ä²»ÊDZê×¼»¯µÄ£¬ËùÒÔËü±ØÐë¶Ôµ½´ïµÄÐÂÕ¾ÉùÃ÷£¬ÔÚ À¶ÑÀÀïÕâÐèÒª 625usec. ûÓбØÒª¶ÔÕâÈ¥ÉùÃ÷£¬ËùÓеÄÀ¶ÑÀÉ豸Öж¼ÓÐÕâÑùµÄÓ²¼þоƬ£¬À¶ÑÀ±»Éè¼ÆµÃ±ã ÒË£¬²¢Çҹ̶¨ÌøÂʺÍÍ£ÑÓʱ¼äµÄ»°´¦ÀíоƬ»á¸ü±ãÒË¡£ 37. Consider the interconnected LANs showns in Fig. 4-44. Assume that hosts a and b are on LAN 1, c is on LAN 2, and d is on LAN 8. Initially, hash tables in all bridges are empty and the spanning tree shown in Fig 4-44(b) is used. Show how the hash tables of different bridges change after each of the following events happen in sequence, first (a) then (b) and so on.£¨M£© n. (a) a sends to d. o. (b) c sends to a. p. (c) d sends to c. q. (d) d moves to LAN 6. r. (e) d sends to a. µÚÒ»Ö¡»á±»ËùÓеÄÍøÇÅת·¢¡£Õâ´«Íêºó£¬Ã¿¸öÍøÇŶ¼»áͨ¹ýËüµÄÉ¢ÁбíÖеĺÏÊÊ ¶Ë¿Ú½¨Ò»¸öµ½Ä¿µÄµØ a µÄ±íÏî¡£ÀýÈ磬D µ±Ç°µÄÉ¢ÁбíΪ´Ó LAN 2 ת·¢µ½Ä¿µÄµØ a£» µÚ¶þÖ¡½«»á±»ÍøÇÅ B, D, and A ÊÕµ½¡£ÕâÐ©ÍøÇÅ»áÔÚËüÃǵÄÉ¢ÁбíÖÐÔö¼ÓÒ»¸öÐ嵀 Ï֡µÄÄ¿µÄµØµ½ c£»ÀýÈçÍøÇÅ D µÄÉ¢Áбí»áÓÖÓÐÒ»¸ö´Ó LAN 2 ת·¢µ½Ä¿µÄµØ ÍøÇÅ G, I and J ²»ÓÃÓÚת·¢ÈκÎÖ¡¡£Ö÷ÒªÔÒòÔÚÓÚÓÐÑ»·¿ÉÒÔΪһ¸öÀ©Õ¹µÄ LAN c µÄ Ìá¸ß¿É¿¿ÐÔ¡£Èç¹ûµ±Ç°Éú³ÉÊ÷ÖеÄÍøÇÅÓлµµÄ£¬Ôò¶¯Ì¬Éú³ÉÊ÷Ëã·¨»áÖØÐÂÅäÖÃÒ»¿Ã ±íÏµÚÈýÖ¡½«»á±»ÍøÇÅ H£¬D£¬A£¬ÒÔ¼° B ÊÕµ½£¬ÕâÐ©ÍøÇŽ«»áÔÚËüÃǵÄÉ¢Áбí еÄÉú³ÉÊ÷£¬Ëü¿ÉÄÜ»á°üº¬Ò»¸ö»ò¶à¸ö²»ÔÚÔÏȵÄÉú³ÉÊ÷ÖеÄÍøÇÅ¡£ ÖÐ 39. Imagine that a switch has line cards for four input lines. It frequently happens Ôö¼ÓÒ»¸ö±íÏ֡µÄÄ¿µÄµØµ½ d£»µÚËÄÖ¡½«»á±»ÍøÇÅ E£¬C£¬B£¬D£¬ÒÔ¼° A that a frame arriving on one of the lines has to exit on another line on the same card. ÊÕµ½£¬ ÍøÇÅ E ºÍ C »áÔÚËüÃǵÄÉ¢ÁбíÖÐÔö¼ÓÒ»¸ö±íÏ֡µÄÄ¿µÄµØµ½ d£¬µ±ÍøÇÅ D£¬What choices is the switch designer faced with as a result of this situation?£¨E£© ×î¼òµ¥×öÑ¡Ôñ¾ÍÊDz»×öÌØÊâ´¦Àí¡£Ã¿Ò»¸öµ½À´µÄÖ¡±»Êä³öµ½µ×°å²¢±»·¢Ë͵½Ä¿±ê B£¬ ¿¨ÉÏ¡£Õâʱ£¬¿¨ÄÚÁ÷Á¿Í¨¹ýµ×°å£»ÁíÒ»ÖÖÑ¡Ôñ¾ÍÊÇʶ±ð³öÕâÖÖÇé¿ö²¢ÇÒ¶ÔÆäרÃÅ´¦ ÒÔ¼° A ¸üÐÂËüÃǵÄÉ¢ÁбíÏîʱ£¬µ½´ïÄ¿µÄµØ d µ± d ÒÆµ½ LAN6 ÉÏÈ¥ºó£¬Èç¹ûËû·¢Êý¾Ý¸ø a µÄ»°£¬Â·ÓÉ j£¬Ò»¶¨¿ÉÒÔÖªµÀ d Àí£¬Ö±½Ó·¢ËÍÖ¡²¢ÇÒ²»Í¨¹ýµ×°å¡£ ÔÚ LAN6 Éϵ쬴ð°¸ÖÐûÓиø³ö j µÄÕâÒ»±íÏî¡£ 40. A switch designed for use with fast Ethernet has a backplane that can move 10 Gbps. How many frames/sec can it handle in the worst case?£¨E£© ×µÄÇé¿ö¾ÍÊÇÎÞÇîµÄ 64-byte (512-bit)Ö¡Á÷¡£Èç¹ûµ×°åÄÜ´¦Àí 10bps£¬¿É´¦ÀíµÄ 9 38. One consequence of using a spanning tree to forward frames in an extended 9 LAN is that some bridges may not participate at all in forwarding frames. Identify Ö¡µÄÊýÁ¿Îª 10/512 = 1,953,125 frames/sec. 41. Consider the network of Fig. 4-49(a). If machine J were to suddenly become three such bridges in Fig. 4-44. Is there any reason for keeping these bridges, even white, would any changes be needed to the labeling? If so, what?£¨E£© though they are not used for forwarding?£¨E£© - 18 - ¶Ë¿Ú B1 µ½ LAN 3 ÐèÒª±»ÖØÐ±ê¼ÇΪ GW. ¿ÉÒÔ¹¤×÷¡£½øÈëºËÐÄÓòµÄÖ¡¶¼»áÊǺϷ¨Ö¡£¬Òò´ËÖ¡»áÔÚµÚÒ»¸öºËÐĽ»»»»úÀï±»¼Ó Éϱê¼Ç£¬¿ÉÒÔÓà MAC »ò IP µØÖ·¡£ ÀàËÆµÄ£¬ÔÚ³ö¿Ú´¦£¬½»»»»úÈ¥µôÕâЩ±ê¼ÇºóÔÙ Êä³öÖ¡¡£ 42. Briefly describe the difference between store-and-forward and cut-through Chapter 5 The Network Layer Problems switches.£¨E£© 1. Give two example computer applications for which connection-oriented service Ò»¸ö´æ´¢×ª·¢½»»»»úÔÚËüµÄ±íÏîÀï´æ´¢½øÀ´µÄÿһ֡£¬È»ºó¼ì²é²¢ÇÒת·¢Ëü£»Ö± is appropriate. Now give two examples for which connectionless service is best.(E) ͨÐͽ»»»»úÖ¡Ò»½øÀ´¾ÍÍêȫת·¢µô¡£Ö»ÒªÄ¿µÄµØµØÖ·ÊÇ¿ÉÓõģ¬×ª·¢¾Í¿ÉÒÔ¿ªÊ¼¡£ 43. Store-and-forward switches have an advantage over cut-through switches with Îļþ´«ËÍ¡¢Ô¶³ÌµÇ¼ºÍÊÓÆµµã²¥ÐèÒªÃæÏòÁ¬½ÓµÄ·þÎñ¡£ÁíÒ»·½Ã棬ÐÅÓÿ¨ÑéÖ¤ºÍ respect to damaged frames. Explain what it is.£¨E£© ´æ´¢×ª·¢Ðͽ»»»»ú´æ´¢Õû¸öÖ¡È»ºóת·¢ËüÃÇ¡£Ò»¸öÖ¡µ½À´ºó£¬¿ÉÒÔÑé֤УÑéºÍ£¬ Èç¹ûÖ¡±»ÆÆ»µÁË£¬ÂíÉ϶ªµô»µÖ¡¡£ÓÃֱͨÐͽ»»»»ú£¬»µÖ¡²»Äܱ»½»»»»ú¶ªµô£¬ÒòΪ ÆäËûµÄÏúÊÛµãÖÕ¶Ë¡¢µç×Ó×ʽð×ªÒÆ£¬ÒÔ¼°Ðí¶àÐÎʽµÄÔ¶³ÌÊý¾Ý¿â·ÃÎÊÉúÀ´¾ßÓÐÎÞÁ¬ ½ÓµÄÐÔÖÊ£¬ÔÚÒ»¸ö·½ÏòÉÏ´«ËͲéѯ£¬ÔÚÁíÒ»¸ö·½ÏòÉÏ·µ»ØÓ¦´ð¡£ 2. Are there any circumstances when connection-oriented service will (or at least should) deliver packets out of order? Explain.(M) ÄÇʱ¼ì²â´íÎóµÄͬʱ֡¾ÍÒѾתµôÁË¡£ ÓС£ÖжÏÐźŲ»×ñ´Ó˳ÐòµÄͶµÝ£¬Ëü»áÌø¹ýÔÚËüÇ°ÃæµÄÊý¾Ý¡£ÀýÈçÊǵ±Ò»¸öÖÕ¶Ë 44. To make VLANs work, configuration tables are needed in the switches and Óû§¼üÈëÍ˳ö£¨»ò kill£©½¡Ê±£¬ÓÉÍ˳öÐźŲúÉúµÄ·Ö×é±»Á¢¼´·¢ËÍ£¬²¢ÇÒÌø¹ýÁ˵± bridges. What if the VLANs of Fig. 4-49(a) use hubs rather than multidrop cables? ǰ¶ÓÁÐÖеȴý³ÌÐò´¦ÀíµÄÅÅÔÚÇ°ÃæÈκÎÊý¾Ý£¨¼´ÒѾ¼üÈ뵫û±»³ÌÐò¶ÁÈ¡µÄÊý¾Ý£©¡£ Do the hubs need configuration tables, too? Why or why not?£¨E£© 3. Datagram subnets route each packet as a separate unit, independent of all ²»×ö·ÓÉ£¬½øÈëµ½¼¯Ï߯÷µÄÿһ֡·Ö·¢µ½ËùÓÐÆäËüµÄÏß·ÉÏ¡£ others. Virtual-circuit subnets do not have to do this, since each data packet follows 45. In Fig. 4-50 the switch in the legacy end domain on the right is a VLAN-aware a predetermined route. Does this observation mean that virtual-circuit subnets do not need the capability to route isolated packets from an arbitrary source to an switch. Would it be possible to use a legacy switch there? If so, how would that work? arbitrary destination? Explain your answer.£¨E£© If not, why not?£¨E£© ²»¶Ô¡£ÎªÁËʹ·Ö×éÄÜ´ÓÈÎÒâÔ´µ½´ïÈÎÒâÄ¿µÄµØ£¬Á¬½Ó½¨Á¢Ê±ÒªÑ¡Ôñ·ÓÉ£¬Ðéµç· ÍøÂçÒ²ÐèÒªÕâÒ»ÄÜÁ¦¡£ ²»ÐèÒª£¬¼¯Ï߯÷Ö»Êǽ«ËùÓеÄÊäÈëÏßÊÕ¼¯ÔÚÒ»Æð£¬²¢Ã»ÓнøÐÐÅäÖá£ÔÚ¼¯Ï߯÷ÖÐ 4. Give three examples of protocol parameters that might be negotiated when a connection is set up.£¨E£© ÔÚÁ¬½Ó½¨Á¢µÄʱºò¿ÉÄÜÒªÐÉÌ´°¿ÚµÄ´óС¡¢×î´ó·Ö×é³ß´çºÍ³¬Ê±Öµ¡£ - 19 - 5. Consider the following design problem concerning implementation of virtual-circuit service. If virtual circuits are used internal to the subnet, each data packet must have a 3-byte header and each router must tie up 8 bytes of storage for circuit identification. If datagrams are used internally, 15-byte headers are needed but no router table space is required. Transmission capacity costs 1 cent per 106 bytes, per hop. Very fast router memory can be purchased for 1 cent per byte and is depreciated over two years, assuming a 40-hour business week. The statistically average session runs for 1000 sec, in which time 200 packets are transmitted. The mean packet requires four hops. Which implementation is cheaper, and by how much?£¨H£© 4 ÌøÒâζ×ÅÒýÈëÁË 5 ¸ö·ÓÉÆ÷¡£ÊµÏÖÐéµç·ÐèÒªÔÚ 1000 ÃëÄڹ̶¨·ÖÅä 5*8=40 ×Ö ½ÚµÄ´æ´¢Æ÷¡£ÊµÏÖÊý¾Ý±¨ÐèÒª±ÈʵÏÖÐéµç·¶à´«Ë͵ÄÍ·ÐÅÏ¢µÄÈÝÁ¿µÈÓÚ(15-3 ) ¡Á4¡Á200£½9600 ×Ö½Ú-Ìø¶Î¡£ ÏÖÔÚµÄÎÊÌâ¾Í±ä³ÉÁË 40000 ×Ö½Ú-Ìø¶ÎµÄµç·ÈÝÁ¿µÄ 7 ËùÓеÄ·ÓÉÑ¡ÔñÈçÏ£º ABCD, ABCF, ABEF, ABEG, AGHD, AGHF, AGEB, and AGEF£¬ËùÒÔ×ÜÌøÊýΪ 24 8. Give a simple heuristic for finding two paths through a network from a given source to a given destination that can survive the loss of any communication line (assuming two such paths exist). The routers are considered reliable enough, so it is not necessary to worry about the possibility of router crashes.£¨E£© ʹÓÃ×î¶Ìͨ·ËÑË÷Ë㷨ѡÔñÒ»Ìõ·¾¶£¬È»ºó£¬É¾³ý¸ÕÕÒµ½µÄ·¾¶ÖеÄʹÓõÄËùÓÐ µÄ»¡£¨¶ÔÓ¦¸÷ÌõÁ´Â·£©¡£½Ó×Å£¬ÔÙÔËÐÐÒ»´Î×î¶Ìͨ·ËÑË÷Ëã·¨¡£Õâ¸öµÚ 2 Ìõ·¾¶ÔÚ µÚ 1 Ìõ·¾¶ÖÐÓÐÏß·ʧЧµÄÇé¿öÏ£¬¿ÉÒÔ×÷ÎªÌæ´ú·¾¶ÆôÓã»·´Ö®ÒàÈ»¡£ ×Ö½Ú-ÃëµÄ´æ´¢Æ÷¶Ô±È 9600¿ªÏú¡£Èç¹û´æ´¢Æ÷µÄʹÓÃÆÚΪÁ½Ä꣬¼´ 3600¡Á8¡Á5¡Á52¡Á2=1.5¡Á10Ã룬һ¸ö×Ö½Ú-ÃëµÄ ´ú¼ÛΪ 1/( 1.5¡Á107)= 6.7¡Á10-8·Ö£¬ÄÇô 40000 ×Ö½Ú-ÃëµÄ´ú¼ÛΪ 2.7 ºÁ·Ö¡£ÁíÒ»·½Ã棬 -61 ¸ö×Ö½Ú-Ìø¶Î´ú¼ÛÊÇ 10·Ö£¬9600 ¸ö×Ö½Ú-Ìø¶ÎµÄ´ú¼ÛΪ 10-6¡Á\‘@2X9600=9.6¡Á10-3·Ö£¬¼´ 9.6 ºÁ·Ö£¬¼´ÔÚÕâ 1000 ÃëÄÚµÄʱ¼äÄÚ±ãÒË´óÔ¼ 6.9 ºÁ·Ö¡£ 9. Consider the subnet of Fig. 5-13(a). Distance vector routing is used, and the following vectors have just come in to router C: from B: (5, 0, 8, 12, 6, 2); from D: 6. Assuming that all routers and hosts are working properly and that all software (16, 12, 6, 0, 9, 10); and from E: (7, 6, 3, 9, 0, 4). The measured delays to B, D, and E, in both is free of all errors, is there any chance, however small, that a packet will be are 6, 3, and 5, respectively. What is C's new routing table? Give both the outgoing line to use and the expected delay.£¨M£© delivered to the wrong destination?£¨E£© ÓпÉÄÜ¡£´óµÄÍ»·¢ÔëÉù¿ÉÄÜÆÆ»µ·Ö×顣ʹÓà k λµÄ¼ìÑéºÍ£¬²î´íÈÔÈ»ÓÐ 2-k µÄ¸Å Âʱ»Â©¼ì¡£Èç¹û·Ö×éµÄÄ¿µÄµØ¶Î»òÐéµç·ºÅÂë±»¸Ä±ä£¬·Ö×齫»á±»Í¶µÝµ½´íÎóµÄÄ¿ µÄµØ£¬²¢¿ÉÄܱ»½ÓÊÕΪÕýÈ·µÄ·Ö×é¡£»»¾ä»°Ëµ£¬Å¼È»µÄÍ»·¢ÔëÉù¿ÉÄܰÑËÍÍùÒ»¸öÄ¿ µÄµØµÄÍêÈ«ºÏ·¨µÄ·Ö×é¸Ä±ä³ÉËÍÍùÁíÒ»¸öÄ¿µÄµØµÄÒ²ÊÇÍêÈ«ºÏ·¨µÄ·Ö×é¡£ 7. Consider the network of Fig. 5-7, but ignore the weights on the lines. Suppose that it uses flooding as the routing algorithm. If a packet sent by A to D has a maximum hop count of 3, list all the routes it will take. Also tell how many hops worth of bandwidth it consumes.£¨E£© A£¬ B£¬C£¬D£¬ E£¬F ͨ¹ý B ¸ø³ö£¨11£¬6£¬14£¬18£¬12£¬8£© - 20 - ͨ¹ý D ¸ø³ö£¨19£¬15£¬9£¬3£¬12£¬13£© ͨ¹ý E ¸ø³ö£¨12£¬11£¬8£¬14£¬5£¬9£© È¡µ½´ïÿһĿµÄµØµÄ×îСֵ£¨C ³ýÍ⣩µÃµ½£º£¨11£¬6£¬0£¬3£¬5£¬8£© Êä³öÏß·ÊÇ£º£¨B£¬B£¬-£¬D£¬E£¬B£© 10. If delays are recorded as 8-bit numbers in a 50-router network, and delay vectors are exchanged twice a second, how much bandwidth per (full-duplex) line is chewed up by the distributed routing algorithm? Assume that each router has three lines to other routers.£¨E£© ·ÓɱíµÄ³¤¶ÈµÈÓÚ 8*50=400bit¡£¸Ã±íÿÃëÖÓÔÚÿÌõÏß·ÉÏ·¢ËÍ 2 ´Ë 400*2=800b/s£¬¼´ÔÚÿÌõÏß·µÄÿ¸ö·½ÏòÉÏÏûºÄµÄ´ø¿í¶¼ÊÇ 800 bps¡£ 11. In Fig. 5-14 the Boolean OR of the two sets of ACF bits are 111 in every row. Is this just an accident here, or does it hold for all subnets under all circumstances? £¨M£© ËüÇøµÄ·ÓÉ£¬14 ¸ö±íÏîÓÃÓÚÔ¶³ÌµÄȺ£¬Õâʱ·Óɱí³ß´ç×îСΪ 20+15+14¡£ ´Î£¬ÒòÕâ¸ö½áÂÛ×ÜÊdzÉÁ¢µÄ¡£Èç¹ûÒ»¸ö·Ö×é´ÓijÌõÏß·Éϵ½´ï£¬±ØÐëÈ·ÈϰüµÄµ½´ï¡£ Èç ¹ûÏß·ÉÏûÓзÖ×éµ½´ï£¬Ëü¾ÍÊÇÔÚ·¢ËÍÈ·ÈÏ¡£Çé¿ö 00 ( ûÓзÖ×éµ½´ï²¢ÇÒ²»·¢ËÍÈ· ÈÏ)ºÍ 11 (µ½´ïºÍ·µ»Ø)Âß¼ÉÏ´íÎó£¬Òò´Ë²»´æÔÚ¡£ 12. For hierarchical routing with 4800 routers, what region and cluster sizes should be chosen to minimize the size of the routing table for a three-layer hierarchy? A good starting place is the hypothesis that a solution with k clusters of k regions of k routers is close to optimal, which means that k is about the cube root of 4800 (around 16). Use trial and error to check out combinations where all three parameters are in the general vicinity of 16. ÒÀÌâ¿ÉÑ¡Ôñ 15 ¸öȺ¡¢16 ¸öÇø£¬Ã¿¸öÇø 20 ¸ö·ÓÉÆ÷ʱ£¬¼´Ê¹µÃ 4800=15*16*20£¬ Õâʱÿ¸ö·ÓÉÆ÷ÐèÒª 20 ¸ö±íÏî¼Ç¼±¾µØÂ·ÓÉÆ÷£¬15 ¸ö±íÏî¼Ç¼ÓÃÓÚµ½Í¬Ò»ÈºÄÚÆä 13. In the text it was stated that when a mobile host is not at home, packets sent to its home LAN are intercepted by its home agent on that LAN. For an IP network on an 802.3 LAN, how does the home agent accomplish this interception?£¨E£© Conceivably it might go into promiscuous mode, reading all frames dropped onto the LAN, but this is very inefficient. Instead, what is normally done is that the home agent tricks the router into thinking it is the mobile host by responding to ARP requests. When the router gets an IP packet destined for the mobile host, it broadcasts an ARP query £¨1£©·´Ïòͨ·ת·¢Ëã·¨£¬Ëã·¨½øÐе½5¸öÌø¶Îºó½áÊø£¬AC£¬FDIJ£¬asking for the 802.3 MAC-level address of the machine with that IP address. When the KHG(D)(J)E(I)N£¬ mobile host is not around, the home agent responds to the ARP, so the router associates L(F)(E)(D)O(H)(J)M£¬(K)(G)(M)(H)(N)(L)£¬×ܹ²²úÉú28¸ö·Ö×é the mobile user¡¯s IP address with the home agent¡¯s 802.3 MAC-level address. £¨2£©Ê¹Óû㼯Ê÷Ëã·¨£¬ÐèÒª 4 ¸öÌø¶Î£¬AC£¬FDIJ£¬KGHEN£¬LMO£¬×ܹ²²úÉú 14. Looking at the subnet of Fig. 5-6, how many packets are generated by a 14 ¸ö·Ö×é¡£ broadcast from B, using a. (a) reverse path forwarding? b. (b) the sink tree?£¨M£© 15. Consider the network of Fig. 5-16(a). Imagine that one new line is added, between F and G, but the sink tree of Fig. 5-16(b) remains unchanged. What changes occur to Fig. 5-16(c)?£¨M£© - 21 - ÔÚ d ÖУ¬E£¬H£¬I ½ÓÊÕµ½Á˹㲥ÐÅÏ¢Ö®ºóÒõÓ°½ÚµãÊÇеĽÓÊսڵ㣻¼ýÍ·ÏÔʾÁË ¿ÉÄܵÄÄæÏò·ÓÉ·¾¶¡£H ÊÕµ½·Ö×é A ºó£¬Ëü¹ã²¥ A£»È»¶ø£¬I ÖªµÀÁËÈçºÎµ½´ï I£¬Ëù ÒÔ I ²»¹ã²¥ÊÕµ½µÄ·Ö×é¡£ 18. Suppose that node B in Fig. 5-20 has just rebooted and has no routing information in its tables. It suddenly needs a route to H. It sends out broadcasts with TTL set to 1, 2, 3, and so on. How many rounds does it take to find a route?£¨E£© ´Ó½áµã B µ½ H ÐèÒª 3 Ìø£¬Òò´ËÒª»¨ 3 ȦÀ´ÕÒµ½Â·ÓÉÏß·¡£ 19. In the simplest version of the Chord algorithm for peer-to-peer lookup, searches do not use the finger table. Instead, they are linear around the circle, in either direction. Can a node accurately predict which direction it should search? Discuss your answer.£¨E£© ¿ÉÒÔ´óÖ¹À¼Æ£¬µ«²»ÊǺܾ«È·¡£¼ÙÉèÓÐ 1024 ¸ö½áµã±ê¼Ç£¬Èç¹û½áµã 300 Node F currently has two descendants, A and D. It now acquires a third one, G, not circled because the packet that follows IFG is not on the sink tree. Node G acquires a second descendant, in addition to D, labeled F. This, too, is not circled as it does not come in on the sink tree. µ±Ç°µÄ c ÖеĽáµã F ÓÐÁ½¸öº¢×Ó A ºÍ D£¬ÒÀÌâÒâ²»¸Ä±ä»ã¼¯Ê÷ b µÄ»°£¬ÔÙ ÕýÔÚ²é Ϊ F ¼Ó Ò»¸öº¢×Ó G£¬²»»áÓл·ÊÇÒòΪ IFG Ö®ºóµÄ·Ö×é²»Ôڻ㼯Ê÷ b ÖС£½áµã G ÏÂÔÙ¼ÓÕÒ½áµã 800£¬¿ÉÄÜ×îºÃȥ˳ʱÕë·½Ïò²éÕÒ£¬µ«ÊÇÒ²Ðí¿ÉÄÜ˳ʱÕë·½ÏòÓÐ 20 ¸öÕæÊµ µÄ Ò»¸ö º¢×Ó D£¬±ê¼Ç F¡£Í¬Ñù£¬²»»áÓл·ÊÇÒòΪÔڻ㼯Ê÷ b ÖÐÖ®ºóÔÙûÓзÖ×é½øÀ´¡£ ½áµãÔÚ½áµã 300 ºÍ½áµã 800 Ö®¼ä£¬¶øÄæÊ±Õë·½ÏòÖ»ÓÐ 16 ¸öÕæÊµ½áµãÔÚËüÃÇÖ®16. Compute a multicast spanning tree for router C in the following subnet for a ¼ä¡£ group with members at routers A, B, C, D, E, F, I, and K.£¨E£© ¶àÖÖÉú³ÉÊ÷ÊÇ¿ÉÄܵģ¬ÀýÈçÆäÖÐÒ»¿ÅΪ£º É¢Áк¯Êý SHA-1 µÄÄ¿µÄÔÚÓÚÉú³ÉÒ»¸ö·Ç³£Á÷³©µÄ·Ö²¼Ê¹µÃ½áµãÃܶÈÔÚ»·ÉÏ»ù±¾ ÉÏÊÇÒ»ÑùµÄ¡£µ«ÊÇ»á×ÜÓÐͳ¼ÆÑ§ÉϵIJ¨¶¯£¬Òò´ËÖ±½ÓÏòǰµÄÑ¡Ôñ¿ÉÄÜÊÇ´íÎóµÄ¡£ 20. Consider the Chord circle of Fig. 5-24. Suppose that node 10 suddenly goes on line. Does this affect node 1's finger table, and if so, how?£¨E£© 17. In Fig. 5-20, do nodes H or I ever broadcast on the lookup shown starting at A? £¨E£© ÔÚ±íÏî 3 ÖеĽáµã´Ó 12 ±ä 10¡£ 21. As a possible congestion control mechanism in a subnet using virtual circuits internally, a router could refrain from acknowledging a received packet until (1) it knows its last transmission along the virtual circuit was received successfully and (2) it has a free buffer. For simplicity, assume that the routers use a stop-and-wait protocol and that each virtual circuit has one buffer dedicated to it for each direction of traffic. If it takes T sec to transmit a packet (data or acknowledgement) - 22 - and there are n routers on the path, what is the rate at which packets are delivered 24. Give an argument why the leaky bucket algorithm should allow just one to the destination host? Assume that transmission errors are rare and that the packet per tick, independent of how large the packet is.£¨M£© host-router connection is infinitely fast.£¨M£© ͨ³£¼ÆËã»úÄܹ»ÒԺܸߵÄËÙÂʲúÉúÊý¾Ý£¬ÍøÂçÒ²¿ÉÒÔÓÃͬÑùµÄËÙÂÊÔËÐС£È»¶ø£¬ ÐÒéºÜ²»ºÃ¡£¶Ôʱ¼äÒÔ T ÃëΪµ¥Î»·Öʱ϶¡£ÔÚʱ϶ 1 ÖУ¬Ô´Â·ÓÉÆ÷·¢Ë͵Úһ·ÓÉÆ÷È´Ö»ÄÜÔÚ¶Ìʱ¼äÄÚÒÔͬÑù¸ßµÄËÙÂÊ´¦ÀíÊý¾Ý¡£¶ÔÓÚÅÅÔÚ¶ÓÁÐÖеÄÒ»¸ö·Ö×飬 ²»¹ÜËüÓжà´ó£¬Â·ÓÉÆ÷±ØÐë×ö´óÔ¼Ïàͬ·ÖÁ¿µÄ¹¤×÷¡£ÏÔÈ»£¬´¦Àí 10 ¸ö 100¸ö·Ö ×Ö½Ú³¤ ×é¡£ÔÚʱ϶ 2 µÄ¿ªÊ¼Ê±µÚ 2 ¸ö·ÓÉÆ÷ÊÕµ½ÁË·Ö×飬µ«ÊÇ»¹Ã»·¢ËÍÈ·ÈÏ¡£ÔÚʱ϶ 3 µÄ·Ö×éËù×÷µÄ¹¤×÷±È´¦Àí 1 ¸ö 1000 ×Ö½Ú³¤µÄ·Ö×éÒª×öµÄ¹¤×÷¶àµÃ¶à¡£ µÄ ¿ªÊ¼Ê±µÚ 3 ¸ö·ÓÉÆ÷ÊÕµ½ÁË·Ö×飬µ«Ò²²»·¢ËÍÈ·ÈÏ¡£ÕâÑù£¬´ËºóËùÓеÄ·ÓÉÆ÷¶¼²» 25. The byte-counting variant of the leaky bucket algorithm is used in a particular ·¢ËÍÈ·ÈÏ¡£½öµ±Ä¿µÄµØÖ÷»ú´ÓÄ¿µÄµØÂ·ÓÉÆ÷È¡µÃ·Ö×éʱ²Å»á·¢ËÍµÚ 1 ¸öÈ·ÈÏ¡£ÏÖsystem. The rule is that one 1024-byte packet, or two 512-byte packets, etc., may be ÔÚ sent on each tick. Give a serious restriction of this system that was not mentioned in È·ÈÏ¿ªÊ¼Íù»Ø´«²¥¡£ÔÚԴ·ÓÉÆ÷¿ÉÒÔ·¢ËÍµÚ 2 ¸ö·Ö×é֮ǰ£¬ÐèÒªÁ½´Îͨ¹ý¸Ãthe text.£¨E£© ×ÓÍø£¬ ²»¿ÉÒÔ·¢ËÍÈκδóÓÚ 1024 ×ֽڵķÖ×é¡£ Ëù·Ñʱ¼äΪ 2(n-1)T Ãë/·Ö×飬ºÜÏÔÈ»£¬ÕâÖÖÐÒéµÄЧÂÊÊǺܵ͵ġ£ 26. An ATM network uses a token bucket scheme for traffic shaping. A new token 22. A datagram subnet allows routers to drop packets whenever they need to. The is put into the bucket every 5 ¦Ìsec. Each token is good for one cell, which contains probability of a router discarding a packet is p. Consider the case of a source host 48 bytes of data. What is the maximum sustainable data rate?(E) connected to the source router, which is connected to the destination router, and ÿ 5 ²úÉúÒ»¸öÁîÅÆ£¬1 ÃëÖпÉÒÔ·¢ËÍ 200,000 ¸öÐÅÔª¡£Ã¿¸öÐÅÔªº¬ÓÐ 48then to the destination host. If either of the routers discards a packet, the source ¸öÊý¾Ý host eventually times out and tries again. If both host-router and router-router lines 5×Ö½Ú£¬¼´ 8¡Á48=384bit¡£×î´óµÄ¿É³ÖÐøµÄ¾»Êý¾ÝËÙÂÊΪ 384¡Á2¡Á10=76.8Mb/s are counted as hops, what is the mean number of 27. A computer on a 6-Mbps network is regulated by a token bucket. The token c. (a) hops a packet makes per transmission? bucket is filled at a rate of 1 Mbps. It is initially filled to capacity with 8 megabits. d. (b) transmissions a packet makes? How long can the computer transmit at the full 6 Mbps?(E) e. (c) hops required per received packet?(M) Óɹ«Ê½ S£½C /(M-P )£¬ÕâÀïµÄ S ±íʾÒÔÃë¼ÆÁ¿µÄÍ»·¢Ê±¼ä³¤¶È£¬M ±íʾÒÔÿÃë×Ö £¨1£©ÓÉÔ´Ö÷»ú·¢Ë͵Äÿ¸ö·Ö×é¿ÉÄÜÐÐ×ß 1 ¶Î¡£×ß 1 ¸ö Ìø¶ÎµÄ¸ÅÂÊΪ p £¬×ß 2 ¸öÌø¶ÎµÄ¸ÅÂÊΪ(1- p)2¡£ÄÇ Ã´£¬Ò»¸ö·Ö×鯽¾ùͨ·³¤¶ÈµÄÆÚÍûֵΪ£ºL=1*p+2*(1- p)p +3*(1- p)2 = p2-3 p+3 2¸öÌø¶Î¡¢2 ¸öÌø¶Î»ò 3 ¸öÌø½Ú¼ÆÁ¿µÄ×î´óÊä³öËÙÂÊ£¬C ±íʾÒÔ×ֽڼƵÄͰµÄÈÝÁ¿£¬P ±íʾÒÔÿÃë×Ö½Ú¼ÆÁ¿µÄÁî ¸öÌø¶ÎµÄ¸ÅÂÊΪ(1- p)p£¬×ß 3ÅÆµ½´ïËÙÂÊ¡£Ôò£ºS=((8*106)/8) / ((6*106)/8 - (1*106)/8) = 1.6 s Òò´Ë£¬¼ÆËã»ú¿ÉÒÔÓÃÍêÈ«ËÙÂÊ 6Mb/s ·¢ËÍ 1.6 s µÄʱ¼ä¡£ 28. Imagine a flow specification that has a maximum packet size of 1000 bytes, a ¼´Ã¿´Î·¢ËÍÒ»¸ö·Ö×éµÄƽ¾ùÌø¶ÎÊýÊÇ p-3 p+3¡£ token bucket rate of 10 million bytes/sec, a token bucket size of 1 million bytes, and £¨2£©Ò»´Î·¢Ëͳɹ¦£¨×ßÍêÕû¸öͨ·£©µÄ¸ÅÂÊΪ(1- p)2£¬Áî a =(1- p)2£¬Á½´Î·¢Éä³É ¹¦µÄ¸ÅÂʵÈÓÚ(1- a) a£¬Èý´Î·¢Éä³É¹¦µÄ¸ÅÂʵÈÓÚ(1- a)2 a £¬¡£¬Òò´ËÒ»¸ö·Ö×鯽¾ù ·¢ËÍ´ÎÊýΪ£º £¬¼´Ò»¸ö·Ö×鯽¾ùÒª·¢ËÍ 1/(1- p )2´Î¡£ a maximum transmission rate of 50 million bytes/sec. How long can a burst at 22 £¨3£©Ã¿Ò»¸ö½ÓÊÕµ½µÄ·Ö×éÐÐ×ߵį½¾ùÌø¶ÎÊýµÈÓÚ£ºH=L*T=( p-3 p+3)/ (1- p) Ê×ÏÈ£¬¾¯¸æÎ»·½·¨Í¨¹ýÉèÖÃÒ»¸öÌØÊâµÄλÀ´ÏÔʾµØ·¢ËÍÒ»¸öÓµÈû±ê¼Ç¸øÔ´¡£¶ø 23. Describe two major differences between the warning bit method and the RED ·½·¨ÊÇͨ¹ý¼òµ¥µØ¶ªµôÔ´·Ö×éÖеÄÒ»¸öÀ´Òþʽ±ê¼Ç¡£ RED method.£¨E£© Æä´Î£¬¾¯¸æÎ»·½·¨Ö»ÓÐÔÚûÓлº³åÇø¿Õ¼äʱ²Å¶ªµôÒ»¸ö·Ö×飬¶ø RED ·½·¨ÊÇÔÚËù ÓеĻº³åÇø¿Õ¼ä±»ÏûºÄÍê²Å¶ªÆú·Ö×é¡£ maximum speed last?£¨E£© Áî×î´óÍ»·¢Ê±¼ä³¤¶ÈΪ ¦¤ t Ãë¡£ÔÚ¼«¶ËÇé¿öÏ£¬Â©Í°ÔÚÍ»·¢ÆÚ¼äµÄ¿ª ʼÊdzäÂúµÄ £¨1MB£©£¬ÕâÆÚ¼äÊý¾ÝÁ÷ÈëͰÄÚ 10¦¤ t MB£¬Á÷³ö°üº¬ 50¦¤ t MB£¬ÓɵÈʽ 1+10¦¤ t=50¦¤ t£¬µÃµ½ ¦¤ t=1/40s£¬¼´ 25ms¡£Òò´Ë£¬ÒÔ×î´óËÙÂÊÍ»·¢´«ËÍ¿Éά³Ö 25ms µÄʱ- 23 - ¼ä¡£ 29. The network of Fig. 5-37 uses RSVP with multicast trees for hosts 1 and 2 as shown. Suppose that host 3 requests a channel of bandwidth 2 MB/sec for a flow from host 1 and another channel of bandwidth 1 MB/sec for a flow from host 2. At the same time, host 4 requests a channel of bandwidth 2 MB/sec for a flow from host 1 and host 5 requests a channel of bandwidth 1 MB/sec for a flow from host 2. How 34. Suppose that host A is connected to a router R 1, R 1 is connected to another much total bandwidth will be reserved for these requests at routers A, B, C, E, H, J, router, R 2, and R 2 is connected to host B. Suppose that a TCP message that K, and L?(E) contains 900 bytes of data and 20 bytes of TCP header is passed to the IP code at host A for delivery to B. Show the Total length, Identification, DF, MF, and Fragment offset fields of the IP header in each packet transmitted over the three links. Assume that link A-R1 can support a maximum frame size of 1024 bytes including a 14-byte frame header, link R1-R2 can support a maximum frame size of 512 bytes, including an 8-byte frame header, and link R2-B can support a maximum frame size of 512 bytes including a 12-byte frame header.£¨M£© ÔÚ I1 ×î³õµÄ IP Êý¾Ý±¨»á±»·Ö¸î³ÉÁ½¸ö IP Êý¾Ý±¨£¬ÒÔºó²»»áÔÙ·Ö¸îÁË¡£ Á´Â· A-R1£ºLength = 940; ID = x; DF = 0; MF = 0; Offset = 0 Á´Â· R1-R2£º (1) Length = 500; ID = x; DF = 0; MF = 1; Offset = 0 (2) Length = 460; ID = x; DF = 0; MF = 0; Offset = 60 Á´Â· R2-B: (1) Length = 500; ID = x; DF = 0; MF = 1; Offset = 0 (2) Length = 460; ID = x; DF = 0; MF = 0; Offset = 60 35. A router is blasting out IP packets whose total length (data plus header) is ¿ÉÒÔ¡£Ö»Ðè°Ñ·Ö×é·â×°ÔÚÊôÓÚËù¾¹ýµÄ×ÓÍøµÄÊý¾Ý±¨µÄÔØºÉ¶ÎÖУ¬²¢½øÐз¢ËÍ¡£ ´ø¿íÁ÷Á¿ÈçÏ£ºA?2£¬B?0£¬C?1£¬E?3£¬H?3£¬J?3£¬K?2 ºÍ L?1 30. The CPU in a router can process 2 million packets/sec. The load offered to it is 1.5 million packets/sec. If a route from source to destination contains 10 routers, how much time is spent being queued and serviced by the CPUs?(E) ÒÀÌâÖª =2 million£¬ =1.5 million£¬¿ÉÖª =0.75£¬´ÓÅŶÓÀíÂÛ¿ÉÖª£¬Ã¿¸ö·Ö ×é¾ÀúµÄÑÓ³ÙÊÇ¿ÕϵͳÖеÄËı¶¡£¿ÕϵͳÖеÄʱÑÓÊÇ 500 nsec£¬ÕâÀïΪ 2 sec. ¾¹ý 10 ¸ö·ÓÉÆ÷£¬ÅŶÓ×Üʱ¼äΪ 20 sec. 31. Consider the user of differentiated services with expedited forwarding. Is there a guarantee that expedited packets experience a shorter delay than regular packets? Why or why not?£¨E£© ÎÞ·¨±£Ö¤£¬Èç¹û¿ìËٵķÖ×éÌ«¶à£¬ËüÃÇ·ÖÅäµÄ´ø¿í¿ÉÄÜ»á±È³£¹æµÄ·Ö×éµÄÐÔÄܸü ²î¡£ 32. Is fragmentation needed in concatenated virtual-circuit internets or only in datagram systems?£¨E£© ¶¼ÐèÒª·Ö¸î¹¦ÄÜ¡£¼´Ê¹ÊÇÔÚÒ»¸ö´®½ÓµÄÐéµçÂ·ÍøÂçÖУ¬ÑØÍ¨Â·µÄÄ³Ð©ÍøÂç¿ÉÄÜ½Ó ÊÜ 1024 ×Ö½Ú·Ö×飬¶øÁíÒ»Ð©ÍøÂç¿ÉÄܽö½ÓÊÜ 48 ×Ö½Ú·Ö×飬·Ö¸î¹¦ÄÜÈÔÈ»ÊÇÐèÒªµÄ¡£ 33. Tunneling through a concatenated virtual-circuit subnet is straightforward: the multiprotocol router at one end just sets up a virtual circuit to the other end and passes packets through it. Can tunneling also be used in datagram subnets? If so, how?£¨E£© 1024 bytes. Assuming that packets live for 10 sec, what is the maximum line speed the router can operate at without danger of cycling through the IP datagram ID number space?£¨E£© addresses, respectively, and in that order. For each of these, give the first IP address assigned, the last IP address assigned, and the mask in the w.x.y.z/s notation.£¨M£© A£º4000?212£»B£º2000?211£»C£º4000?212£»D£º8000?213£» Èç¹ûÏß·µÄ±ÈÌØÂÊΪ b£¬ÔòÿÃëÖÓ·Ö×éµÄÊýÁ¿Îª b/8192£¬ÄÇô·¢ËÍÒ»¸ö·Ö×éËùÐè ʼµØÖ·£¬Î²µØÖ·£¬ºÍ×ÓÍøÑÚÂëÈçÏ£º µÄʱ¼äΪ 8192/b£»Êä³ö 65,536 ¸ö·Ö×éÒª»¨·Ñ 229 /b sec£¬ÒÀÌâ·Ö×éµÄÉú´æÆÚΪ A£º198.16.0.0 ¨C198.16.15.255 ×ÓÍøÐ´×÷ 198.16.0.0/20 10s£¬ B£º198.16.16.0 ¨C 198.16.23.255 ×ÓÍøÐ´×÷ 198.16.16.0/21 ½« 229 /b=10£¬¿ÉµÃ b Ϊ 53,687,091 bps C£º198.16.32.0 ¨C 198.16.47.255 ×ÓÍøÐ´×÷ 198.16.32.0/20 40. A large number of consecutive IP address are available starting at 198.16.0.0. Suppose that four organizations, A, B, C, and D, request 4000, 2000, 4000, and 8000 - 24 - D£º198.16.64.0 ¨C 198..16.95.255 ×ÓÍøÐ´×÷ 198.16.64.0/19 46. ARP and RARP both map addresses from one space to another. In this respect, they are similar. However, their implementations are fundamentally different. In what major way do they differ?£¨E£© ÔÚ RARP µÄʵÏÖÖÐÓÐÒ»¸ö RARP ·þÎñÆ÷¸ºÔð»Ø´ð²éѯÇëÇó¡£ ÔÚ ARP µÄʵÏÖÖÐûÓÐÕâÑùµÄ·þÎñÆ÷£¬Ö÷»ú×Ô¼º»Ø´ð ARP ²éѯ¡£ 52. The Protocol field used in the IPv4 header is not present in the fixed IPv6 header. Why not?£¨E£© ÉèÖÃÐÒé¶ÎµÄÄ¿µÄÊÇÒª¸æËßÄ¿µÄµØÖ÷»ú°Ñ IP ·Ö×é½»¸øÄÇÒ»¸öÐÒé´¦Àí³ÌÐò¡£ÖР;µÄ·ÓÉÆ÷²¢²»ÐèÒªÕâÒ»ÐÅÏ¢£¬Òò´Ë²»±Ø°ÑËü·ÅÔÚÖ÷Í·ÖС£Êµ¼ÊÉÏ£¬Õâ¸öÐÅÏ¢´æÔÚ ÓÚÍ·ÖУ¬µ«±»Î±×°ÁË¡£×îºóÒ»¸ö£¨À©Õ¹£©Í·µÄÏÂÒ»¸ö×ֶξÍÓÃÓÚÕâһĿµÄ¡£ Chapter 6 The Transport Layer Problems 1. In our example transport primitives of Fig. 6-2, LISTEN is a blocking call. Is this strictly necessary? If not, explain how a nonblocking primitive could be used. What advantage would this have over the scheme described in the text?(E) ´Ó¨D±»¶¯Á¬½Ó½¨Á¢ÔÚ½øÐÐÖС¬µ½¨DÒѽ¨Á¢¡¬µÄÐéÏß²»ÔÙÒÀÈ·ÈϵĴ«ÊäÇé¿ö¶ø¶¨¡£¸Ã±ä Ǩ¿ÉÁ¢¼´·¢Éú¡£ÊµÖÊÉÏ£¬¨D±»¶¯Á¬½Ó½¨Á¢ÔÚ½øÐÐÖС¬×´Ì¬ÒѾÏûʧ£¬ÒòΪËüÃÇʲôʱ ºò¶¼²»¿É¼û¡£ 3. In both parts of Fig. 6-6, there is a comment that the value of SERVER_PORT must be the same in both client and server. Why is this so important?£¨E£© Èç¹û¿Í»§»ú·¢ËÍÒ»¸ö·Ö×鏸 SERVER_PORT ²¢ÇÒ·þÎñÆ÷µ±Ê±²¢Ã»ÓÐÕìÌýÕâÒ»¶Ë ¿Ú£¬ÄÇôÕâ¸ö·Ö×齫²»»á±»Í¶µÝ¸ø·þÎñÆ÷¡£ 4. Suppose that the clock-driven scheme for generating initial sequence numbers is used with a 15-bit wide clock counter. The clock ticks once every 100 msec, and the maximum packet lifetime is 60 sec. How often need resynchronization take place a. (a) in the worst case? b. (b) when the data consumes 240 sequence numbers/min?£¨M£© ʱÖÓÇý¶¯·½°¸µÄ»ù±¾Ë¼ÏëÊÇͬһʱ¼ä²»»áÓÐÁ½¸ö»î¶¯µÄ TPDUs ʹÓÃÏàͬµÄÐòÁÐ ºÅ¡£ÐòÁкſռäÓ¦¸Ã×ã¹»´ó£¬Ê¹µÃµ±±àºÅÑ»·Ò»ÖÜʱ£¬¾ßÓÐÏàͬºÅÂëµÄ¾ÉµÄ TPDU ÒÑ ¾²»¸´´æÔÚ¡£ £¨a£© ʱÖÓ´óÑ»·ÖÜÆÚÊÇ 215£¬¼´ 32768 100ms£¬¼´ 0.1 Ã룬ËùÒÔ µÎ´ð£¬Ã¿µÎ´ð ²»ÊÇ¡£ÊÂʵÉÏ£¬LISTEN µ÷ÓÿÉÒÔ±íÃ÷½¨Á¢ÐÂÁ¬½ÓµÄÒâÔ¸£¬µ«²»·âËø¡£µ±ÓÐÁ˽¨ Á¢Á¬½ÓµÄ³¢ÊÔʱ£¬µ÷ÓóÌÐò¿ÉÒÔ±»Ìṩһ¸öÐźš£È»ºó£¬ËüÖ´ÐУ¬±ÈÈç˵£¬OK »ò REJECT À´½ÓÊÜ»ò¾Ü¾øÁ¬½Ó¡£È»¶ø£¬ÔÚÔÏȵķâËøÐÔ·½°¸ÖУ¬¾Íȱ·¦ÕâÖÖÁé»îÐÔ¡£ 2. In the model underlying Fig. 6-4, it is assumed that packets may be lost by the network layer and thus must be individually acknowledged. Suppose that the network layer is 100 percent reliable and never loses packets. What changes, if any, are needed to Fig. 6-4?(E) ´óÑ»·ÖÜÆÚÊÇ 3276.8s ËÍ·½ÔÚ ¡£¼Ù¶¨Êý¾Ý²úÉúËÙÂʷdz£µÍ£¨½Ó½üÁ㣩£¬ÄÇô·¢ - 25 - 3276.8-60=3271.8 Ãëʱ½øÈë½ûÖ¹Çø£¬ÐèÒª½øÐÐÒ»´ÎÖØÐÂͬ²½¡£ ×µÄÇé¿öÊÇÑӳٵĨDÁ¬½ÓÇëÇ󡬺ͶԨDÁ¬½Ó±»½ÓÊÕ¡¬µÄÈ·ÈÏÓ¦´ð¶¼ÔÚÍøÂçÉÏ´æ»î¡£ £¨b£© ÿ·ÖÖÓʹÓà 240 ¸öÐòÁкţ¬¼´Ã¿ÃëʹÓà 4 ¸öºÅ¿ÉÒÔÉèÏ룬µ±µÚ 2 ¸öÖØ¸´·Ö×éµ½´ïʱ£¬Èç¹ûÔÚÍøÉÏ»¹´æÔÚÒ»¸öÀϵĶÔÐòÁкÅΪ y µÄ ÃëΪµ¥Î»£©£¬ÄÇôʵ¼ÊʹÓÃÖеÄÐòÁкÅÊÇ 4t ¸ö¡£µ±½Ó½ü´óÑ»·µÄĩβʱÒÔ¼°ÔÚÏÂÒ» ·Ö×éµÄÈ·ÈÏÓ¦´ð£¬ÏÔÈ»»áÆÆ»µÈý´ÎÎÕÊÖÐÒéµÄÕý³£¹¤×÷£¬¹ÊÕÏÐԵIJúÉúÒ»ÌõûÓÐÈË ´óÑ»·µÄ¿ªÊ¼½×¶Î£¬4t ÓÐÒ»¶¨µÄ´óС£¬Î»ÓÚ½ûÖ¹ÇøµÄÉÏ·½£¬ÏÖÔÚÓÉÓÚÿÃëÖÓ 10 ÕæÕýÐèÒªµÄÁ¬½Ó£¬´Ó¶øµ¼ÖÂÔÖÄÑÐԵĺó¹û¡£ ¸ö 6. Imagine that a two-way handshake rather than a three-way handshake were µÎ´ð£¬½ûÖ¹ÇøµÄ×ó±ßÊÇ 10(t-3216.8)¡£Áî4t =10(t-3216.8)£¬µÃt=5316.3 Ãë¡£¼´µ± t=5316.3 Â룬Èç¹ûʱ¼äÒÔ t ±íʾ£¨ÒÔ Ê±£¬¿ªÊ¼½øÈë½ûÖ¹Çø£¬ÐèÒª½øÐÐÒ»´ÎÖØÐÂͬ²½¡£ 5. Why does the maximum packet lifetime, T, have to be large enough to ensure that not only the packet but also its acknowledgements have vanished?£¨M£© Ê×ÏÈ¿´Èý´ÎÎÕÊÖ¹ý³ÌÊÇÈçºÎ½â¾öÑÓ³ÙµÄÖØ¸´µ½´ïµÄ·Ö×éËùÒýÆðµÄÎÊÌâµÄ¡£ used to set up connections. In other words, the third message was not required. Are deadlocks now possible? Give an example or show that none exist.£¨M£© ÎÒÃÇÖªµÀ£¬3 ´ÎÎÕÊÖÍê³ÉÁ½¸öÖØÒª¹¦ÄÜ£¬¼ÈҪ˫·½×öºÃ·¢ËÍÊý¾ÝµÄ×¼±¸¹¤×÷£¨Ë« ·½¶¼ÖªµÀ±Ë´ËÒÑ×¼±¸ºÃ£©£¬Ò²ÒªÔÊÐíË«·½¾Í³õʼÐòÁкŽøÐÐÐÉÌ£¬Õâ¸öÐòÁкÅÔÚÎÕ ÊÖ¹ý³ÌÖб»·¢ËÍÓëÈ·ÈÏ¡£ ÏÖÔÚ°ÑÈý´ÎÎÕÊָijɽöÐèÒªÁ½´ÎÎÕÊÖ£¬ËÀËøÊÇ¿ÉÄÜ·¢ÉúµÄ¡£ÀýÈ磬¿¼ÂǼÆËã»ú A ºÍ B Ö®¼äµÄͨÐÅ¡£¼Ù¶¨ B ¸ø A ·¢ËÍÒ»¸öÁ¬½ÓÇëÇó·Ö×飬A ÊÕµ½ÁËÕâ¸ö·Ö×飬²¢ Õý³£Çé¿öÏ£¬µ±Ö÷»ú 1 ·¢³öÁ¬½ÓÇëÇóʱ£¬Ö÷»ú 1 Ñ¡ÔñÒ»¸öÐòºÅ x£¬²¢ÏòÖ÷»ú 2 ·¢ ËÍÒ»¸ö°üº¬¸ÃÐòºÅµÄÇëÇó TPDU£»½Ó×Å£¬Ö÷»ú 2 »ØÓ¦Ò»¸ö½ÓÊÜÁ¬½ÓµÄ TPDU£¬È·ÈÏ x£¬²¢ÉùÃ÷×Ô¼ºËùÑ¡ÓõijõʼÐòÁкŠy£»×îºó£¬Ö÷»ú 1 ÔÚÆä·¢Ë͵ĵÚÒ»¸öÊý¾Ý TPDU ÖÐÈ·ÈÏÖ÷»ú 2 ËùÑ¡ÔñµÄ³õʼÐòÁкš£ µ±³öÏÖÑÓ³ÙµÄÖØ¸´µÄ¿ØÖÆ TPDU ¸öÒѾÊͷŵÄÁ¬½Ó µÄÑÓ³ÙÖØ¸´µÄÁ¬½ÓÇëÇó£¨ CONNECTION REQUEST£©£¬¸Ã TPDU ÔÚÖ÷»ú 1 ºÁ²»Öª ʱ£¬Ò»¸ö TPDU ÊÇÀ´×ÔÓÚÒ»ÇéµÄÇé¿öϵ½´ïÖ÷»ú 2¡£ Ö÷»ú 2 ͨ¹ýÏòÖ÷»ú 1 ·¢ËÍÒ»¸ö½ÓÊÜÁ¬½ÓµÄ TPDU£¨CONNECTION ACCEPTED£© À´ÏìÓ¦¸Ã TPDU£¬¶ø¸Ã½ÓÊÜÁ¬½ÓµÄ TPDU µÄÕæÕýÄ¿µÄÊÇ֤ʵÖ÷»ú 1 ȷʵÊÔͼ½¨Á¢Ò» ¸öеÄÁ¬½Ó¡£ÔÚÕâÒ»µãÉÏ£¬¹Ø¼üÔÚÓÚÖ÷»ú 2 ½¨ÒéʹÓà y ×÷Ϊ´ÓÖ÷»ú 2 µ½Ö÷»ú 1 ½» ͨµÄ³õʼÐòÁкţ¬´Ó¶øËµÃ÷ÒѾ²»´æÔÚ°üº¬ÐòÁкÅΪ y µÄ TPDU£¬Ò²²»´æÔÚ¶Ô y µÄ Ó¦´ð·Ö×é¡£µ±µÚ¶þ¸öÑÓ³ÙµÄ TPDU µ½´ïÖ÷»ú 2 ʱ£¬z ±»È·È϶ø²»ÊÇ y ±»È·ÈϵÄÊ ʵ¸æËßÖ÷»ú 2 ÕâÊÇÒ»¸ö¾ÉµÄÖØ¸´µÄ TPDU£¬Òò´Ë·ÏÖ¹¸ÃÁ¬½Ó¹ý³Ì¡£ÔÚÕâÀï¡£Èý´ÎÎÕ ÊÖÐÒéÊdzɹ¦µÄ¡£