for(i=0;i G.arcs[m]=G.arcs[n]; G.arcs[m]=G.arcs[n]; //将边的关系随之交换 } G.arcs[m][m].adj=0; G.vexnum--; return OK; }//Delete_Vex 分析:如果不把待删除顶点交换到最后一个顶点的话,算法将会比较复杂,而伴随着大量元素的移动,时间复杂度也会大大增加。 ③ 增加一条边 Status Insert_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上插入边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(i==j) return ERROR; if(!G.arcs[j].adj) { G.arcs[j].adj=1; G.arcnum++; } return OK; }//Insert_Arc ④ 删除一条边 Status Delete_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上删除边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(G.arcs[j].adj) { G.arcs[j].adj=0; G.arcnum--; } return OK; }//Delete_Arc XLIX 以邻接表作为存储结构,本题只给出Insert_Arc算法.其余算法类似。 Status Insert_Arc(ALGraph &G,char v,char w)//在邻接表表示的图G上插入边(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; p=new ArcNode; p->adjvex=j;p->nextarc=NULL; if(!G.vertices.firstarc) G.vertices.firstarc=p; else { for(q=G.vertices.firstarc;q->q->nextarc;q=q->nextarc) if(q->adjvex==j) return ERROR; //边已经存在 q->nextarc=p; } G.arcnum++; return OK; }//Insert_Arc (2)一个连通图采用邻接表作为存储结构,设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。 [算法描述] Void DFSn(Graph G,int v) { //从第v个顶点出发非递归实现深度优先遍历图G Stack s; SetEmpty(s); Push(s,v); While(!StackEmpty(s)) { //栈空时第v个顶点所在的连通分量已遍历完 Pop(s,k); If(!visited[k]) { { } L visited[k]=TRUE; VisitFunc(k); //访问第k个顶点 //将第k个顶点的所有邻接点进栈 if(!visited[w]&&w!=GetTop(s)) Push(s,w); //图中有环时w==GetTop(s) for(w=FirstAdjVex(G,k);w;w=NextAdjVex(G,k,w))