(3)便于研究基因的突变 细菌和病毒均属于单倍体,所有突变都能立即表现出来,不存在显性掩盖隐性的问题。 (4)便于研究基因的作用 通过基本培养基和选择培养基的影印培养,很容易筛选出营养缺陷型,利于生化[研究。
(5)便于基因重组的研究 通过细菌的转化、转导和接合作用,在一支试管中可以产生遗传性状不相同的后代。
(6)便于用于研究基因结构、功能及调控机制的材料 细菌和病毒的遗传物质简单,基因定位和结构分析等易于进行且可用生理生化方法进行基因的表达和调控分析。
(7)便于进行遗传操作 细菌质粒和病毒作为载体,已成为高等生物的分子遗传学研究和生物工程的重要工具。
3.答:大肠杆菌属于原核生物、而玉米是真核生物,二者基因组存在很大的区别:
(1)基因组大小不同:大肠杆菌DNA以单个染色体的形式存在,长约1100μm,分子量约为2.6×109;玉米以10对染色体存在(n=10),基因组非常庞大。
(2)染色体组成不同:大肠杆菌DNA不与组蛋白结合,也不形成核小体结构,是一个封闭的大环结构;而玉米DNA与组蛋白结合,形成典型的核小体结构,呈直线排列,并多级折叠成光学显微镜下可见的染色体结构。 (3)大肠杆菌的基因发生突变,在当代个体中即可表现出来,而在玉米中基因组中则存在基因的显隐性关系。 (4)DNA合成时期不同:大肠杆菌DNA在整个细胞生长过程中都可进行,而玉米DNA只在细胞周期的S期合成。
(5)复制起点不同:大肠杆菌只有一个复制起点,在而玉米存在多个复制起点。
(6)DND组成不同:大肠杆菌中一般由单一序列组成,且基因的排列方式非常紧凑,存在重叠基因现象;而玉米中则存在大量的重复序列,许多基因以基因家族方式存在。 4.
答:(1)a、b、c3个突变在连锁图上的次序为右图,由于噬菌体的DNA是环状结构,而不是线状排列,因此它们之间的距离不是累加的。
(2)根据⑴的三个基因间的连锁距离可知,基因间重组率较低的是ac和bc,因此ab+c+和a+bc两种类型的重组体频率最低。
(3)根据 ⑴ 的重组率可知:c基因在中间: bc间单交换产生acb和a+ c+b+的频率共为1.5%; ac间单交换产生a+cb+和a c+b的频率共为2.0%; 双交换a c+b+和a+cb的频率共为0.03%。
5.答:(1)这一杂交中亲本基因型是+++和pqr;
(2)根据杂交后代中双交换类型和亲本基因型,便可推断出基因次序为:qpr或rpq; (3)基因之间的图距。
类型 亲本类型 单交换型I
基因型 +++ pqr pq+ ++r 数目 235 270 62 60 505 122 比例(%) 16.8 √ 重组率(%) √ - 17 -
单交换型II 双交换型 共: p+r +q+ p++ +qr 48 40 7 4 726 88 11 12.1 1.5 √ 18.3 √ √ 13.6 √ 29 pr之间的遗传距离为18.3遗传单位;pq之间的遗传距离为13.6遗传单位;因为有双交换的存在,qr之间的遗传距离为∶28.9+2×1.5=31.9遗传单位。
6.答:这四种现象的相同之处是:都是细菌的遗传物质DNA在不同的细菌细胞之间传递,从而使受体细胞遗传物质发生重组。
不同之处是:转化是裸露的DNA直接与处于感受态的细胞之间的互作,进入受体细胞,发生重组;接合是由于F因子的整合产生Hfr菌株,在F因子进行转移时,供体菌遗传物质也被带入受体菌,实现重组;性导是Hfr菌株中F因子的错误环出,产生了携带有供体菌遗传物质的F'因子,接合时随F'因子的转移而使供体菌遗传物质导入到受体菌中;转导是细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,并通过感染而转移到另一个受体菌内。
7.假定你证明对过去一个从未描述过的细菌种有遗传重组,如使ab+菌株与a+b菌株混合培养,形成a+b+、ab的重组类型,试说明将采用哪种方式来确定这种重组是转化、转导还是接合的结果。
答:参照戴维斯的U型管试验,将两菌株放入培养,后代中发现如无重组类型,则该遗传重组类型为接合产生的;后代中如有重组类型,可能是转化或转导产生的;可进一步试验,在U型管中加入DNA酶,检测后代有无重组,如无重组则为该类型为转化产生的,如有则是转导产生的。
8.答:这个位点距离Hfr染色体的转移起点(O)应该是远。
因为如这个敏感位点距转移起点(O)近情况下,Hfr菌株的基因从原点处开始进入受体菌,使得敏感位点较早地重组进受体菌中,在中断杂交后,除去Hfr菌株的同时也除去了重组有敏感位点的重组个体,这样就无法检测敏感位点之后的基因重组距离了。
9.答:3号培养基合适,因为1号培养基,所有菌株均为链霉素敏感,在该培养基中将抑制所有的菌株;2号培养基,无法区分重组体和受体菌;3号培养基,加叠氮化钠可以抑制供体菌的生长,同时又不加亮氨酸,受体菌也无法生长;4号培养基中,加链霉素将抑制所有菌株;5号培养基,加链霉素也将将抑制所有菌。
10. 答:根据上表结果可知各基因位点在不同菌株中的排列顺序:
菌株 HfrP4X HfrKL98 HfrRa-2 lac+ arg+ ilu+ gal+ xyl+ xyl+ his+ ilu+ arg+ 供体位点 arg+ thr+ his+ xyl+ lac+ gal+ ilu+ gal+ lac+ thr+ his+ thr+
- 18 -
11.答:(1)一般重组类型占比例比亲本类型少,当检查b+c+时,大部分都是a-d-,因此a-b-c+d-基因型为受体菌。
(2)本实验说明了F因子插入位点位于b c 之前,而离ad较远。
12.答:这个原始大肠杆菌是溶原性的。
因为:当溶原性的大肠杆菌放入含λ噬菌体的培养基中时,由于大肠杆菌本身存在抗超数感染性质,因此不裂解;另外λ噬菌体是温和性噬菌体,侵染大肠杆菌之后,进入溶原状态,并不马上走裂解途径。 13.答:(1)因为met+最后进入受体,易于检测出。 (2)基因次序是thi+ pur+ met+。 (3)重组单位的图距是:
(4)在三个位点间发生双交换才有可能发生met+ thi+ pur-的个体,由于中断杂交的时间短或者所筛选的群体小,未能发现该个体。
14.答:(1)三个基因间的连锁顺序:由实验1可知,ara基因距leu基因近,而距ilvH基因远;由实验2可知,ilvH基因距ara基因近,而距leu基因远;由实验3进一步验证,ilvH基因与ara基因间,无leu基因。因此三个基因的连锁顺序为:
(2)这个转导片段的大小:ilvH基因与ara基因间的并发转导中有1~5%,与leu基因间未发生过转导,因此,这个转导片段的大小是从ilvH位点到ara和leu位点之间。
15.答:(1)strRmtl+的比例很小,说明这两个位点的相距较远。因为,DNA转化只能以小片段的形式进入受体,距离远的两个基因同时位于同一个片段的机会小,并发转化的机会也小。
(2)两基因位于不同的片段上,并发转化的概率是两个位点单个转化的概率的乘积,因此产生strRmtl+基因型的个体更少,且明显少于共存于同一染色体上的两个位点的共转化。
16.答:(1)这3个基因的次序:
由上表可知,后代数目最少的基因型为trpC+ pyrF- trpA+,因为三个基因位点中,只有发生了双交换的频率是最少的,可以推断基因顺序为:trpC trpA pyrF;
(2)TrpC和pyrF以及trpC和trpA的合转导频率: TrpC和pyrF的合转导频率是:
trpC和trpA的合转导频率是:
(3)假定P1染色体长为10mm,这些基因之间的物理距离: TrpC和pyrF的物理距离是:
- 19 -
trpC和trpA的物理距离是:
17.答:根据题意可推断,Hfr菌株A是高频同源重组菌株,F因子插入的位臵是位于gal+lac+之间,且gal+基因靠近于F因子转移的起点,lac+基因则相反,因此A向转移gal+比较早而且频率高,但是转移lac+迟而且效率低。由于细菌染色体很长,一般容易中断,很难转移完整的一个F因子,因此,菌株B的gal+重组体仍为F-。
从菌株A的变体菌株C,可推断为,由于lac+基因靠近F因子的另一端,F因子环出时错误地包装了lac+基因而未包裹gal+基因,因此,C×B的杂交中,B菌株的lac+重组体一般是F+。菌株C向B转移lac+早,而且频率高,但不转移gal+。
18.答:有些细胞可以从mal-基因开始把整个细菌染色体转移到F-中,那么这些细胞肯定是Hfr类型,假定F'因子带有A、B、C、D四个区域,转移切口(O)发生在C和D之间,mal+基因位于A与B之间,则(a)型细胞产生最大的可能是:F'mal+整合在细胞染色体上,位置恰好相邻于mal-基因,而mal+基因紧挨着转移切口位点,而mal-基因则相反,具体见下图。
+- (b)型细胞产生最大的可能是:F'mal先与细胞染色体上的mal基因发生同源重组,产生F'mal-因子,该因
子再与主染色体发生整合,位置同(a),具体过程见下图。
第八章 基因表达与调控
1.答:孟德尔把控制性状的因子称为遗传因子;约翰生提出基因(gene)这个名词,取代遗传因子;摩尔根等对果蝇、玉米等的大量遗传研究,建立了以基因和染色体为主体的经典遗传学。
经典遗传学认为:基因是一个最小的单位,不能分割;既是结构单位,又是功能单位。具体指:(1)基因是化学实体:以念珠状直线排列在染色体上;(2)交换单位:基因间能进行重组,而且是交换的最小单位。(3)突变单位:一个基因能突变为另一个基因。(4)功能单位:控制有机体的性状。
分子遗传学认为:(1)将基因概念落实到具体的物质上,并给予具体内容:一个基因是DNA分子上的一定区段,携带有特殊的遗传信息。(2)基因不是最小遗传单位,而是更复杂的遗传和变异单位:例如在一个基因区域内,仍然可以划分出若干起作用的小单位。现代遗传学上认为: ①.突变子:是在性状突变时,产生突变的最小单位。一个突变子可以小到只有一个碱基对,如移码突变。②.重组子:在性状重组时,可交换的最小单位称为重组子。一个交换子只包含一个碱基对。 ③.顺反子:表示一个作用的单位,基本上符合通常所描的基因大小或略小,包括的一段DNA与一个多链的合成相对应,即保留了基因是功能单位的解释。(3)分子遗传学对基因概念的新发展:结构基因:指可编码RNA或蛋白质的一段DNA序列。调控基因:指其表达产物参与调控其它基因表达
- 20 -