计算机网络谢希仁第七版课后答案完整版

(2) 满载分片数Q={L_max/MSS}取整=2941758发送的总报文数 =3591.3秒,即59.85分,约1小时。 5—23 (1) (2) (3) (4)

主机A向主机B连续发送了两个TCP报文段,其序号分别为70和100。试问: 第一个报文段携带了多少个字节的数据?

主机B收到第一个报文段后发回的确认中的确认号应当是多少?

如果主机B收到第二个报文段后发回的确认中的确认号是180,试问A发送的第二个报文段中如果A发送的第一个报文段丢失了,但第二个报文段到达了B。B在第二个报文段到达后向A

的数据有多少字节?

发送确认。试问这个确认号应为多少?

解:(1)第一个报文段的数据序号是70到99,共30字节的数据。 (2)确认号应为100.(3)80字节。 (4)70 5—24

一个TCP连接下面使用256kb/s的链路,其端到端时延为128ms。经测试,发现吞吐量只有

120kb/s。试问发送窗口W是多少?(提示:可以有两种答案,取决于接收等发出确认的时机)。 解:来回路程的时延等于256ms(=128ms×2).设窗口值为X(注意:以字节为单位),假定一次最大发送量等于窗口值,且发射时间等于256ms,那么,每发送一次都得停下来期待再次得到下一窗口的确认,以得到新的发送许可.这样,发射时间等于停止等待应答的时间结果,测到的平均吞吐率就等于发送速率的一半,即8X÷(256×1000)=256×0.001X=8192所以,窗口值为8192.

5—25 为什么在TCP首部中要把TCP端口号放入最开始的4个字节? 答:在ICMP的差错报文中要包含IP首部后面的8个字节的内容,而这里面有TCP首部中的源端口和目的端口。当TCP收到ICMP差错报文时需要用这两个端口来确定是哪条连接出了差错。 5—26 5—27

为什么在TCP首部中有一个首部长度字段,而UDP的首部中就没有这个这个字段? 答:一个TCP报文段的数据部分最多为多少个字节?为什么?如果用户要传送的数

TCP首部除固定长度部分外,还有选项,因此TCP首部长度是可变的。UDP首部长度是固定的。 据的字节长度超过TCP报文字段中的序号字段可能编出的最大序号,问还能否用TCP来传送?

答:65495字节,此数据部分加上TCP首部的20字节,再加上IP首部的20字节,正好是IP数据报的最大长度65535.(当然,若IP首部包含了选择,则IP首部长度超过 20字节,这时TCP报文段的数据部分的长度将小于65495字节。) 数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,通过循环使用序号,仍能用TCP来传送。 5—28 5—29

主机A向主机B发送TCP报文段,首部中的源端口是m而目的端口是n。当B向A发送回信在使用TCP传送数据时,如果有一个确认报文段丢失了,也不一定会引起与该确认报文段对应

时,其TCP报文段的首部中源端口和目的端口分别是什么?答:分别是n和m。 的数据的重传。试说明理由。

答:还未重传就收到了对更高序号的确认。 5—30

设TCP使用的最大窗口为65535字节,而传输信道不产生差错,带宽也不受限制。若报文段的

平均往返时延为20ms,问所能得到的最大吞吐量是多少?

答:在发送时延可忽略的情况下,最大数据率=最大窗口*8/平均往返时间=26.2Mb/s。 5—31

通信信道带宽为1Gb/s,端到端时延为10ms。TCP的发送窗口为65535字节。试问:可能达到

的最大吞吐量是多少?信道的利用率是多少? 答: L=65536×8+40×8=524600 C=109b/s L/C=0.0005246s Td=10×10-3s 0.02104864

Throughput=L/(L/C+2×Td)=524600/0.0205246=25.5Mb/s

Efficiency=(L/C)//(L/C+2×D)=0.0255

最大吞吐量为25.5Mb/s。信道利用率为25.5/1000=2.55% 5—32

什么是Karn算法?在TCP的重传机制中,若不采用Karn算法,而是在收到确认时都认为是对重

传报文段的确认,那么由此得出的往返时延样本和重传时间都会偏小。试 问:重传时间最后会减小到什么程度?

答:Karn算法:在计算平均往返时延RTT时,只要报文段重传了,就不采用其往返时延样本。 设新往返时延样本Ti

RTT(1)=a*RTT(i-1)+(1-a)*T(i); RTT^(i)=a* RTT(i-1)+(1-a)*T(i)/2; RTT(1)=a*0+(1-a)*T(1)= (1-a)*T(1); RTT^(1)=a*0+(1-a)*T(1)/2= RTT(1)/2 RTT(2)= a*RTT(1)+(1-a)*T(2); RTT^(2)= a*RTT(1)+(1-a)*T(2)/2; = a*RTT(1)/2+(1-a)*T(2)/2= RTT(2)/2

RTO=beta*RTT,在统计意义上,重传时间最后会减小到使用karn算法的1/2. 5—33

假定TCP在开始建立连接时,发送方设定超时重传时间是RTO=6s。

(1)当发送方接到对方的连接确认报文段时,测量出RTT样本值为1.5s。试计算现在的RTO值。 (2)当发送方发送数据报文段并接收到确认时,测量出RTT样本值为2.5s。试计算现在的RTO值。答: (1)据RFC2988建议,RTO=RTTs+4*RTTd。其中RTTd是RTTs的偏差加权均值。 初次测量时,RTTd(1)= RTT(1)/2; 后续测量中,RTTd(i)=(1-Beta)* RTTd(i-1)+Beta*{ RTTs- RTT(i)}; Beta=1/4

依题意,RTT(1)样本值为1.5秒,则

RTTs(1)=RTT(1)=1.5s RTTd(1)=RTT(1)/2=0.75s RTO(1)=RTTs(1)+4RTTd(1)=1.5+4*0.75=4.5(s) (2)RTT(2)=2.5 RTTs(1)=1.5s RTTd(1)=0.75s RTTd(2)=(1-Beta)* RTTd(1)+Beta*{ RTTs(1)- RT (2)}=0.75*3/4+{1.5-2.5}/4=13/16

RTO(2)=RTTs(1)+4RTTd(2)=1.5+4*13/16=4.75s 5—34

已知第一次测得TCP的往返时延的当前值是30 ms。现在收到了三个接连的确认报文段,它们

比相应的数据报文段的发送时间分别滞后的时间是:26ms,32ms和24ms。设α=0.9。试计算每一次的新的加权平均往返时间值RTTs。讨论所得出的结果。 答:a=0.1, RTTO=30 RTT1=RTTO*(1-a) +26*a=29.6 RTT2=RTT1*a+32(1-a)=29.84 RTT3=RTT2*a+24(1-a)=29.256

三次算出加权平均往返时间分别为29.6,29.84和29.256ms。 可以看出,RTT的样本值变化多达20%时,加权平均往返 5—35

试计算一个包括5段链路的运输连接的单程端到端时延。5段链路程中有2段是卫星链路,有3

段是广域网链路。每条卫星链路又由上行链路和下行链路两部分组成。可以取这两部分的传播时延之和为250ms。每一个广域网的范围为1500km,其传播时延可按150000km/s来计算。各数据链路速率为48kb/s,帧长为960位。

答:5段链路的传播时延=250*2+(1500/150000)*3*1000=530ms 5段链路的发送时延=960/(48*1000)*5*1000=100ms 所以5段链路单程端到端时延=530+100=630ms

5—36 5—37

重复5-35题,但假定其中的一个陆地上的广域网的传输时延为150ms。答:760ms

在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法?这里每一种算法各起什

么作用? “乘法减小”和“加法增大”各用在什么情况下?答:慢开始: 在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段

MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以分组注入到网络的速率更加合理。 拥塞避免: 当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。拥塞避免算法使发送的拥塞窗口每经过一个往返时延RTT就增加一个MSS的大小。快重传算法规定:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。快恢复算法:当发送端收到连续三个重复的ACK时,就重新设置慢开始门限 ssthresh与慢开始不同之处是拥塞窗口 cwnd 不是设置为 1,而是设置为ssthresh若收到的重复的AVK为n个(n>3),则将cwnd设置为ssthresh若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh

乘法减小:是指不论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前的拥塞窗口值乘以 0.5。当网络频繁出现拥塞时,ssthresh 值就下降得很快,以大大减少注入到网络中的分组数。加法增大:是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口 cwnd增加一个 MSS 大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞 。 5—38

设TCP的ssthresh的初始值为8(单位为报文段)。当拥塞窗口上升到12时网络发生了超时,TCP

使用慢开始和拥塞避免。试分别求出第1次到第15次传输的各拥塞窗口大小。你能说明拥塞控制窗口每一次变化的原因吗? 答:拥塞窗口大小分别为:1,2,4,8,9,10,11,12,1,2,4,6,7,8,9. 5—39 cwnd n 1 2 3 4 5 6 7 8 9 10 11 12 13 cwnd n 14 15 16 17

40 41 42 21 22 1 2 4 8 16 32 33 34 35 36 37 38 39

TCP的拥塞窗口cwnd大小与传输轮次n的关系如下所示:

18 19 20 21 22 23 24 25 26

23 24 25 26 1 2 4 8

(1)试画出如图5-25所示的拥塞窗口与传输轮次的关系曲线。 (2)指明TCP工作在慢开始阶段的时间间隔。 (3)指明TCP工作在拥塞避免阶段的时间间隔。

(4)在第16轮次和第22轮次之后发送方是通过收到三个重复的确认还是通过超市检测到丢失了报文段? (5)在第1轮次,第18轮次和第24轮次发送时,门限ssthresh分别被设置为多大? (6)在第几轮次发送出第70个报文段?

(7)假定在第26轮次之后收到了三个重复的确认,因而检测出了报文段的丢失,那么拥塞窗口cwnd和门限ssthresh应设置为多大?

答:(1)拥塞窗口与传输轮次的关系曲线如图所示(课本后答案): (2) 慢开始时间间隔:【1,6】和【23,26】 (3) 拥塞避免时间间隔:【6,16】和【17,22】

(4) 在第16轮次之后发送方通过收到三个重复的确认检测到丢失的报文段。在第22轮次之后发送方是通过超时检测到丢失的报文段。

(5) 在第1轮次发送时,门限ssthresh被设置为32 在第18轮次发送时,门限ssthresh被设置为发生拥塞时的一半,即21. 在第24轮次发送时,门限ssthresh是第18轮次发送时设置的21(6) 第70报文段在第7轮次发送出。(7) 拥塞窗口cwnd和门限ssthresh应设置为8的一半,即4. 5—40

TCP在进行流量控制时是以分组的丢失作为产生拥塞的标志。有没有不是因拥塞而引起的分组

丢失的情况?如有,请举出三种情况。

答:当Ip数据报在传输过程中需要分片,但其中的一个数据报未能及时到达终点,而终点组装IP数据报已超时,因而只能丢失该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧没有足够的差错空间而只好丢弃。 5—41

用TCP传送512字节的数据。设窗口为100字节,而TCP报文段每次也是传送100字节的数据。

再设发送端和接收端的起始序号分别选为100和200,试画出类似于图5-31的工作示意图。从连接建立阶段到连接释放都要画上。 5—42

在图5-32中所示的连接释放过程中,主机B能否先不发送ACK=x+1的确认? (因为后面要发

送的连接释放报文段中仍有ACK=x+1这一信息)

答:如果B不再发送数据了,是可以把两个报文段合并成为一个,即只发送FIN+ACK报文段。但如果B还有数据报要发送,而且要发送一段时间,那就不行,因为A迟迟收不到确认,就会以为刚才发送的FIN报文段丢失了,就超时重传这个FIN报文段,浪费网络资源。 5—43

在图(5-33)中,在什么情况下会发生从状态LISTEN到状态SYN_SENT,以及从状

态SYN_ENT到状态SYN_RCVD的变迁?

答:当A和B都作为客户,即同时主动打开TCP连接。这时的每一方的状态变迁都是: CLOSED----àSYN-SENT---àSYN-RCVD--àESTABLISHED 5—44

试以具体例子说明为什么一个运输连接可以有多种方式释放。可以设两个互相通信的用户分别

连接在网络的两结点上。

联系客服:779662525#qq.com(#替换为@)