4-10 Sixteen stations, numbered 1 through 16, are contending for the use of a shared channel by using the adaptive tree walk protocol. If all the stations whose addresses are prime numbers suddenly become ready at once, how many bit slots are needed to resolve the contention? 16¸öÕ¾µÄ±àºÅ´Ó1µ½16£¬ËüÃÇÕýÔÚ¾ºÕùʹÓÃÒ»¸öʹÓÃÁË¿ÉÊÊÓ¦Ê÷¾¶ÐÒéµÄ¹²ÏíÐŵÀ¡£Èç¹ûµØÖ·±àºÅΪËØÊýµÄËùÓÐվͻȻ¼äÈ«²¿Òª·¢ËÍÖ¡£¬ÇëÎÊÐèÒª¶àÉÙλʱ²Û²ÅÄܽâ¾ö¾ºÕù£¿ ´ð£ºÔÚ×ÔÊÊÓ¦Ê÷±éÀúÐÒéÖУ¬¿ÉÒÔ°ÑÕ¾µã×éÖ¯³É¶þ²æÊ÷£¨¼ûͼ£©µÄÐÎʽ¡£ÔÚÒ»´Î³É¹¦µÄ´«ÊäÖ®ºó£¬ÔÚµÚÒ»¸ö¾ºÕùʱ϶ÖУ¬È«²¿Õ¾¶¼¿ÉÒÔÊÔͼ»ñµÃÐŵÀ£¬Èç¹û½öÆäÖÐÖ®Ò»ÐèÓÃÐŵÀ£¬Ôò·¢ËͳåÍ»£¬ÔòµÚ¶þʱ϶ÄÚÖ»ÓÐÄÇЩλÓÚ½ÚµãB ÒÔϵÄÕ¾£¨0 µ½7£©¿ÉÒԲμӾºÕù¡£ÈçÆäÖÐÖ®Ò»»ñµÃÐŵÀ£¬±¾Ö¡ºóµÄʱ϶Áô¸øÕ¾µãC ÒÔϵÄÕ¾£»Èç¹ûB µãÏÂÃæÓÐÁ½¸ö»ò¸ü¶àµÄվϣÍû·¢ËÍ£¬ÔÚµÚ¶þʱ϶ÄڻᷢÉú³åÍ»£¬ÓÚÊǵÚÈýʱ϶ÄÚÓÉD ½ÚµãÒÔϸ÷Õ¾À´¾ºÕùÐŵÀ¡£
±¾ÌâÖУ¬Õ¾2¡¢3¡¢5¡¢7¡¢11 ºÍ13 Òª·¢ËÍ£¬ÐèÒª13 ¸öʱ϶£¬Ã¿¸öʱ϶ÄڲμӾºÕùµÄÕ¾µÄÁбíÈçÏ£º µÚһʱ϶£º2¡¢3¡¢5¡¢7¡¢11¡¢13 µÚ¶þʱ϶£º2¡¢3¡¢5¡¢7 µÚÈýʱ϶£º2¡¢3 µÚËÄʱ϶£º¿ÕÏÐ µÚÎåʱ϶£º2¡¢3 µÚÁùʱ϶£º2 µÚÆßʱ϶£º3 µÚ°Ëʱ϶£º5¡¢7 µÚ¾Åʱ϶£º5 µÚʮʱ϶£º7
µÚʮһʱ϶£º11¡¢13 µÚÊ®¶þʱ϶£º11 µÚÊ®Èýʱ϶£º13
4-14 Six stations, A through F, communicate using the MACA protocol. Is it possible that two transmissions take place simultaneously? Explain your answer. Êǵģ¬ÏëÏñËüÃÇÅųÉÒ»ÌõÖ±Ïߣ¬Ã¿¸öÕ¾Ö»Äܵ½´ïÆä×î½üµÄÁÚ¾Ó¡£µ±EÏòF·¢ËÍʱAÒ²ÄÜÏòB·¢ËÍ¡£
4-21 Consider building a CSMA/CD network running at 1 Gbps over a 1-km cable with no repeaters. The signal speed in the cable is 200,000 km/sec. What is the minimum frame size? ¿¼ÂÇÔÚÒ»Ìõ1km³¤µÄµçÀ£¨ÎÞÖмÌÆ÷£©ÉϽ¨Á¢Ò»¸ö1GbpsËÙÂʵÄCSMA/CDÍøÂç¡£ÐźÅÔÚµçÀÂÖеÄËÙ¶ÈΪ200000km/s¡£ÇëÎÊ×îСµÄÖ¡³¤¶ÈΪ¶àÉÙ£¿ ´ð£º¶ÔÓÚ1km µçÀ£¬µ¥³Ì´«²¥Ê±¼äΪ1/200000?=5¡Á10-6 s£¬¼´5£¬À´»Ø·³Ì´«²¥Ê±¼äΪ2t =10¡£ÎªÁËÄܹ»°´ÕÕCSMA/CD ¹¤×÷£¬×îС֡µÄ·¢Éäʱ¼ä²»ÄÜСÓÚ10¡£ÒÔ1Gb/s ËÙÂʹ¤×÷£¬10¿ÉÒÔ·¢Ë͵ıÈÌØÊýµÈÓÚ£º
Òò´Ë£¬×îС֡ÊÇ10 000 bit »ò1250 ×Ö½Ú³¤¡£
µÚ 17 Ò³ ¹² 40 Ò³
4-22 An IP packet to be transmitted by Ethernet is 60 bytes long, including all its headers. If LLC is not in use, is padding needed in the Ethernet frame, and if so, how many bytes? Ò»¸öͨ¹ýÒÔÌ«Íø´«Ë͵½IP·Ö×éÓÐ60×Ö½Ú³¤£¬ÆäÖаüÀ¨ËùÓеÄÍ·²¿¡£Èç¹ûûÓÐʹÓÃLLCµÄ»°£¬ÔòÒÔÌ«ÍøÖ¡ÖÐÐèÒªÌî²¹×Ö½ÚÂ룿Èç¹ûÐèÒªµÄ»°£¬ÇëÎÊÐèÒªÌî²¹¶àÉÙ×Ö½Ú£¿ ×îСµÄÒÔÌ«Ö¡ÊÇ64bytes£¬°üÀ¨ÁËÒÔÌ«Ö¡Í·²¿µÄ¶þÕßµØÖ·¡¢ÀàÐÍ/³¤¶ÈÓò¡¢Ð£ÑéºÍ¡£ÒòΪͷ²¿ÓòÕ¼ÓÃ18 bytes ±¨ÎÄÊÇ60 bytes£¬×ܵÄÖ¡³¤¶ÈÊÇ78 bytes, ÒѾ³¬¹ýÁË64-byte µÄ×îСÏÞÖÆ¡£Òò´Ë£¬²»ÐèÒªÌî²¹¡£
4-23 Ethernet frames must be at least 64 bytes long to ensure that the transmitter is still going in the event of a collision at the far end of the cable. Fast Ethernet has the same 64-byte minimum frame size but can get the bits out ten times faster. How is it possible to maintain the same minimum frame size? ¿ìËÙÒÔÌ«ÍøµÄ×î´óÏß·³¤¶ÈÊÇÒÔÌ«ÍøµÄ1/10 ¡£
4-24 Some books quote the maximum size of an Ethernet frame as 1518 bytes instead of 1500 bytes. Are they wrong? Explain your answer. ÓÐЧÔغÉÊÇ1500 bytes, µ«½«Ä¿µÄµØÖ·¡¢Ô´µØÖ·¡¢ÀàÐÍ/³¤¶ÈºÍУÑéºÍÓò¶¼¼ÆËã½øÈ¥µÄ»°£¬×ܺ;ÍÊÇ1518.
4-37 Consider the interconnected LANs showns in Fig. 4-44. Assume that hosts a and b are on LAN 1, c is on LAN 2, and d is on LAN 8. Initially, hash tables in all bridges are empty and the spanning tree shown in Fig 4-44(b) is used. Show how the hash tables of different bridges change after each of the following events happen in sequence, first (a) then (b) and so on. (a) a sends to d. (b) c sends to a. (c) d sends to c. (d) d moves to LAN 6. (e) d sends to a. ¿¼ÂÇͼ4.44ÖÐÏ໥Á¬½ÓµÄLAN¡£¼ÙÉèÖ÷»úaºÍbÔÚLAN1ÉÏ£¬Ö÷»úcÔÚLAN2ÉÏ£¬Ö÷»údÔÚLAN8ÉÏ¡£¸Õ¿ªÊ¼µÄʱºò£¬ËùÓеÄÍøÇÅÄÚ²¿µÄÉ¢ÁÐ±í¶¼Êǿյģ¬²¢ÇÒʹÓÃÁËͼ4.44bËùʾµÄÉú³ÉÊ÷¡£ÔÚÏÂÃæ¸ø³öµÄÿ¸öʼþÒÀ´Î·¢ÉúÒԺ󣬲»Í¬ÍøÇŵÄÉ¢ÁÐ±í½«ÈçºÎ±ä»¯¡££¨a)aÏòd·¢ËÍÖ¡(b)cÏòa·¢ËÍÖ¡(c)dÏòc·¢ËÍÖ¡(d)dÒƶ¯µ½LAN6ÉÏ(e)dÏòa·¢ËÍÖ¡ µÚÒ»¸öÖ¡»á±»Ã¿¸öÍøÇÅת·¢¡£Õâ´Î´«Êäºó£¬Ã¿¸öÍøÇŵÄÉ¢Áбí»áµÃµ½Ò»¸ö´øÓÐÊʵ±¶Ë¿ÚµÄÄ¿µÄµØΪaµÄÏîÄ¿¡£ÀýÈçDµÄÉ¢Áбí»áÓÐÒ»¸öÏòÔÚLAN2ÉϵÄÄ¿µÄµØΪaת·¢Ö¡µÄÏîÄ¿¡£µÚ¶þ¸öÐÅÏ¢»á±»ÍøÇÅB, DºÍA¿´µ½¡£ÕâЩÍøÇÅ»áÔÚËüÃǵÄÉ¢ÁбíÖÐÌí¼ÓÒ»¸öÄ¿µÄµØΪcµÄÐÂÏîÄ¿¡£ÀýÈ磬ÍøÇÅDµÄÉ¢ÁбíÏÖÔÚ»áÓÐÁíÒ»¸öÏòÔÚLAN2ÉϵÄÄ¿µÄµØΪcת·¢Ö¡µÄÏîÄ¿¡£µÚÈý¸öÐÅÏ¢»á±»ÍøÇÅH, D, AºÍB¿´µ½¡£ÕâЩÍøÇÅ»áÔÚËüÃǵÄÉ¢ÁбíÖÐÌí¼ÓÒ»¸öÄ¿µÄµØΪdµÄÐÂÏîÄ¿¡£µÚÎåÌõÐÅÏ¢»á±»ÍøÇÅE, C, B, DºÍA¿´µ½¡£ÍøÇÅEºÍC»áÔÚËûÃǵÄÉ¢ÁбíÌí¼ÓÒ»¸öÄ¿µÄµØΪdµÄÐÂÏîÄ¿£¬Óë´Ëͬʱ£¬ÍøÇÅD, BºÍA ½«»á¸üÐÂËüÃǶÔӦĿµÄµØdµÄÉ¢ÁбíÏîÄ¿¡£
µÚ 18 Ò³ ¹² 40 Ò³
4-38 One consequence of using a spanning tree to forward frames in an extended LAN is that some bridges may not participate at all in forwarding frames. Identify three such bridges in Fig. 4-44. Is there any reason for keeping these bridges, even though they are not used for forwarding? ÔÚÒ»¸öÀ©Õ¹µÄLANÖÐʹÓÃÉú³ÉÊ÷À´×ª·¢Ö¡µÄÒ»¸ö½á¹ûÊÇ£¬ÓеÄÍøÇÅ¿ÉÄܸù±¾²»²ÎÓëÖ¡µÄת·¢¹ý³Ì¡£ÇëÔÚͼ4.44Öбê³öÈý¸öÕâÑùµÄÍøÇÅ¡£¼ÈÈ»ÕâЩÍøÇÅûÓб»ÓÃÓÚת·¢Ö¡£¬ÄÇôÊÇ·ñÓÐÀíÓÉÒª±£ÁôÕâЩÍøÇÅÄØ£¿ ÍøÇÅ G, I ºÍ J ûÓб»ÓÃÀ´×ª·¢ÈκÎÖ¡¡£ÔÚÒ»¸öÀ©Õ¹µÄLANÖоßÓлØ·µÄÖ÷ÒªÔÒòÊÇÔö¼Ó¿É¿¿ÐÔ¡£Èç¹ûµ±Ç°
Éú³ÉÊ÷ÖеÄÈκÎÍøÇųöÁ˹ÊÕÏ£¬£¨¶¯Ì¬£©Éú³ÉÊ÷Ëã·¨Öع¹Ò»¸öеÄÉú³ÉÊ÷£¬ÆäÖпÉÄÜ°üÀ¨Ò»¸ö»ò¸ü¶à²»ÊôÓÚÏÈÇ°Éú³ÉÊ÷²¿·ÖµÄÍøÇÅ¡£
4-42 Briefly describe the difference between store-and-forward and cut-through switches.
´æ´¢-ת·¢Ðͽ»»»»úÍêÕû´æ´¢ÊäÈëµÄÿ¸öÖ¡£¬È»ºó¼ì²é²¢×ª·¢¡£Ö±Í¨Ðͽ»»»»úÔÚÊäÈë֡ûÓÐÈ«²¿µ½´ï֮ǰ¾Í¿ªÊ¼×ª·¢¡£Ò»µÃµ½Ä¿µÄµØÖ·£¬×ª·¢¾Í¿ªÊ¼ÁË¡£
4-43 Store-and-forward switches have an advantage over cut-through switches with respect to damaged frames. Explain what it is.
Store-and-forward switches store entire frames before forwarding them. After a frame comes in, the checksum can be verified. If the frame is damaged, it is discarded immediately. With cut=through, damaged frames cannot be discarded by the switch because by the time the error is detected, the frame is already gone. Trying to deal with the problem is like locking the barn door after the horse has escaped.
´æ´¢-ת·¢Ðͽ»»»»úÔÚת·¢Ö¡Ö®Ç°´æ´¢Õû¸öÖ¡¡£µ±Ò»¸öÖ¡µ½´ïʱ£¬Ð£ÑéºÍ½«±»ÑéÖ¤¡£Èç¹ûÖ¡Òѱ»Ë𻵣¬Ëü½«±»Á¢¼´¶ªÆú¡£
ÔÚֱͨÐͽ»»»»ú£¬Ë𻵵ÄÖ¡²»Äܱ»½»»»»ú¶ªÆú¡£ÒòΪµ±´íÎó±»¼ì²âµ½Ê±£¬Ö¡ÒѾ¹ýÈ¥ÁË¡£ÏëÒª´¦ÀíÕâ¸öÎÊÌâ¾ÍÏñÊÇÔÚÂíÒѾÌÓÒÝÖ®ºóÔÙËøÉÏÉü¿ÚÅï¡£
µÚ 19 Ò³ ¹² 40 Ò³
µÚ 5 Õ ÍøÂç²ã
5-1 Give two example computer applications for which connection-oriented service is appropriate. Now give two examples for which connectionless service is best. ´ð£ºÎļþ´«ËÍ¡¢Ô¶³ÌµÇ¼ºÍÊÓƵµã²¥ÐèÒªÃæÏòÁ¬½ÓµÄ·þÎñ¡£ÁíÒ»·½Ã棬ÐÅÓÿ¨ÑéÖ¤ºÍÆäËûÏúÊÛµãÖնˡ¢µç×Ó×ʽðתÒÆ£¬¼°Ðí¶àÐÎʽԶ³ÌÊý¾Ý¿â·ÃÎÊÉúÀ´¾ßÓÐÎÞÁ¬½ÓÐÔÖÊ£¬ÔÚÒ»¸ö·½ÏòÉÏ´«ËͲéѯ£¬ÔÚÁíÒ»¸ö·½ÏòÉÏ·µ»ØÓ¦´ð¡£
5-2 Are there any circumstances when connection-oriented service will (or at least should) deliver packets out of order? Explain. ´ð£ºÓС£ÖжÏÐźÅÓ¦¸ÃÌø¹ýÔÚËüÇ°ÃæµÄÊý¾Ý£¬½øÐв»×ñ´Ó˳ÐòµÄͶµÝ¡£µäÐ͵ÄÀý×ÓÊǵ±Ò»¸öÖÕ¶ËÓû§¼üÈëÍ˳ö£¨»òkill£©½¡Ê±¡£ÓÉÍ˳öÐźŲúÉúµÄ·Ö×éÓ¦¸ÃÁ¢¼´·¢ËÍ£¬²¢ÇÒÓ¦¸ÃÌø¹ýµ±Ç°¶ÓÁÐÖÐÅÅÔÚÇ°ÃæµÈ´ý³ÌÐò´¦ÀíµÄÈκÎÊý¾Ý£¨¼´ÒѾ¼üÈ뵫ÉÐδ±»³ÌÐò¶ÁÈ¡µÄÊý¾Ý£©¡£
5-3 Datagram subnets route each packet as a separate unit, independent of all others. Virtual-circuit subnets do not have to do this, since each data packet follows a predetermined route. Does this observation mean that virtual-circuit subnets do not need the capability to route isolated packets from an arbitrary source to an arbitrary destination? Explain your answer. ´ð£º²»¶Ô¡£ÎªÁË´ÓÈÎÒâÔ´µ½ÈÎÒâÄ¿µÄµØ£¬ÎªÁ¬½Ó½¨Á¢µÄ·Ö×éÑ¡Ôñ·ÓÉ£¬Ðéµç·ÍøÂç¿Ï¶¨ÐèÒªÕâÒ»ÄÜÁ¦¡£
5-5 Consider the following design problem concerning implementation of virtual-circuit service. If virtual circuits are used internal to the subnet, each data packet must have a 3-byte header and each router must tie up 8 bytes of storage for circuit identification. If datagrams are used internally, 15-byte headers are needed but no router table space is required. Transmission capacity costs 1 cent per 106 bytes, per hop. Very fast router memory can be purchased for 1 cent per byte and is depreciated over two years, assuming a 40-hour business week. The statistically average session runs for 1000 sec, in which time 200 packets are transmitted. The mean packet requires four hops. Which implementation is cheaper, and by how much? ´ð£ºÐéµç·ʵÏÖÐèÒªÔÚ1000 ÃëÄڹ̶¨·ÖÅä5*8=40 ×ֽڵĴ洢Æ÷¡£Êý¾Ý±¨ÊµÏÖÐèÒª±ÈÐéµç·ʵÏֶഫË͵ÄÍ·ÐÅÏ¢µÄÈÝÁ¿µÈÓÚ(15-3 )? ¡Á4¡Á200£½9600×Ö½Ú-Ìø¶Î¡£ÏÖÔÚµÄÎÊÌâ¾Í±ä³ÉÁË40000 ×Ö½Ú-ÃëµÄ´æ´¢Æ÷¶Ô±È9600 ×Ö½Ú-Ìø¶ÎµÄµç·ÈÝÁ¿¡£Èç¹û´æ´¢Æ÷µÄʹÓÃÆÚΪÁ½Ä꣬¼´3600¡Á8¡Á5¡Á52¡Á2=1.7¡Á107Ã룬һ¸ö×Ö½Ú-ÃëµÄ´ú¼ÛΪ1/( 1.5¡Á107)?= 6.7¡Á10-8 ·Ö£¬ÄÇô40000 ×Ö½Ú-ÃëµÄ´ú¼ÛΪ2.7 ºÁ·Ö¡£ÁíÒ»·½Ã棬1 ¸ö×Ö½Ú-Ìø¶Î´ú¼ÛÊÇ10-6 ·Ö£¬9600 ¸ö×Ö½Ú-Ìø¶ÎµÄ´ú¼ÛΪ10-6 ¡Á?9600=9.6¡Á10-3·Ö£¬¼´9.6 ºÁ·Ö£¬¼´ÔÚÕâ1000 ÃëÄÚµÄʱ¼äÄÚ±ãÒË´óÔ¼6.9 ºÁ·Ö¡£
µÚ 20 Ò³ ¹² 40 Ò³