´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£
×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º
S={P(x, f(x))¡Å?Q(x, f(x))¡ÅR(x, f(x))}
(4) ¶Ôν´Ê(?x) (?y) (?z)(P(x, y)¡úQ(x, y)¡ÅR(x, z))£¬ÏÈÏûÈ¥Á¬½Ó´Ê¡°¡ú¡±µÃ£º
(?x) (?y) (?z)(?P(x, y)¡ÅQ(x, y)¡ÅR(x, z)) ÔÙÏûÈ¥´æÔÚÁ¿´Ê£¬¼´ÓÃSkolemº¯Êýf(x)Ìæ»»yµÃ£º
(?x) (?y) (?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y)))
´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£
×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º
S={?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y))}
3-13 ÅжÏÏÂÁÐ×Ӿ伯ÖÐÄÄЩÊDz»¿ÉÂú×ãµÄ£º
(1) {?P¡ÅQ, ?Q, P, ?P}
(2) { P¡ÅQ , ?P¡ÅQ, P¡Å?Q, ?P¡Å?Q } (3) { P(y)¡ÅQ(y) , ?P(f(x))¡ÅR(a)}
(4) {?P(x)¡ÅQ(x) , ?P(y)¡ÅR(y), P(a), S(a), ?S(z)¡Å?R(z)} (5) {?P(x)¡ÅQ(f(x),a) , ?P(h(y))¡ÅQ(f(h(y)), a)¡Å?P(z)} (6) {P(x)¡ÅQ(x)¡ÅR(x) , ?P(y)¡ÅR(y), ?Q(a), ?R(b)}
½â£º(1) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º
?P¡ÅQ ?Q
?P P
NIL
(2) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º
P¡ÅQ ?P¡ÅQ P¡Å?Q ?P¡Å?Q
?Q Q
NIL
(3) ²»ÊDz»¿ÉÂú×ãµÄ£¬ÔÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (4) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ
(5) ²»ÊDz»¿ÉÂú×ãµÄ£¬ÔÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (6) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ
3.14 ¶ÔÏÂÁи÷Ìâ·Ö±ðÖ¤Ã÷GÊÇ·ñΪF1,F2,¡,FnµÄÂß¼½áÂÛ£º
(1) F: (?x)(?y)(P(x, y)
G: (?y)(?x)(P(x, y)
(2) F: (?x)(P(x)¡Ä(Q(a)¡ÅQ(b)))
G: (?x) (P(x)¡ÄQ(x))
(3) F: (?x)(?y)(P(f(x))¡Ä(Q(f(y)))
G: P(f(a))¡ÄP(y)¡ÄQ(y)
(4) F1: (?x)(P(x)¡ú(?y)(Q(y)¡ú?L(x.y)))
F2: (?x) (P(x)¡Ä(?y)(R(y)¡úL(x.y))) G: (?x)(R(x)¡ú?Q(x))
(5) F1: (?x)(P(x)¡ú(Q(x)¡ÄR(x)))
F2: (?x) (P(x)¡ÄS(x)) G: (?x) (S(x)¡ÄR(x))
½â£º(1) ÏȽ«FºÍ?G»¯³É×Ӿ伯£º S={P(a,b), ?P(x,b)} ÔÙ¶ÔS½øÐйé½á£º
P(a,b) ?P(x,b)
{a/x} NIL
ËùÒÔ£¬GÊÇFµÄÂß¼½áÂÛ
(2) ÏȽ«FºÍ?G»¯³É×Ӿ伯
ÓÉFµÃ£ºS1={P(x)£¬(Q(a)¡ÅQ(b))} ÓÉÓÚ?GΪ£º? (?x) (P(x)¡ÄQ(x))£¬¼´
(?x) (? P(x)¡Å? Q(x))£¬
¿ÉµÃ£º S2={? P(x)¡Å? Q(x)}
Òò´Ë£¬À©³äµÄ×Ӿ伯Ϊ£º
S={ P(x)£¬(Q(a)¡ÅQ(b))£¬? P(x)¡Å? Q(x)}
ÔÙ¶ÔS½øÐйé½á£º
Q(a)¡ÅQ(b)
{a/b}
? P(x)¡Å? Q(a)
{a/x}
P(x) ? P(a)
{a/x} NIL
ËùÒÔ£¬GÊÇFµÄÂß¼½áÂÛ
ͬÀí¿ÉÇóµÃ(3)¡¢(4)ºÍ(5)£¬ÆäÇó½â¹ý³ÌÂÔ¡£
3.15 ÉèÒÑÖª£º
(1) Èç¹ûxÊÇyµÄ¸¸Ç×£¬yÊÇzµÄ¸¸Ç×£¬ÔòxÊÇzµÄ׿¸¸£» (2) ÿ¸öÈ˶¼ÓÐÒ»¸ö¸¸Çס£
ʹÓùé½áÑÝÒïÍÆÀíÖ¤Ã÷£º¶ÔÓÚijÈËu£¬Ò»¶¨´æÔÚÒ»¸öÈËv£¬vÊÇuµÄ׿¸¸¡£
½â£ºÏȶ¨Òåν´Ê
F(x,y)£ºxÊÇyµÄ¸¸Ç× GF(x,z)£ºxÊÇzµÄ׿¸¸ P(x)£ºxÊÇÒ»¸öÈË
ÔÙÓÃν´Ê°ÑÎÊÌâÃèÊö³öÀ´£º
ÒÑÖªF1£º(?x) (?y) (?z)( F(x,y)¡ÄF(y,z))¡úGF(x,z)) F2£º(?y)(P(x)¡úF(x,y))
ÇóÖ¤½áÂÛG£º(?u) (?v)( P(u)¡úGF(v,u)) È»ºóÔÙ½«F1£¬F2ºÍ?G»¯³É×Ӿ伯£º ¢Ù ?F(x,y)¡Å?F(y,z)¡ÅGF(x,z)
¢Ú ?P(r)¡ÅF(s,r)
¢Û P(u)
¢Ü ?GF(v,u))
¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬Æä¹é½áÍÆÀí¹ý³ÌÈçÏ£º
?F(x,y)¡Å?F(y,z)¡ÅGF(x,z) ?GF(v,u)
{x/v,z/u}
?F(x,y)¡Å?F(y,z) ?P(r)¡ÅF(s,r)
{x/s,y/r} ?F(y,z)¡Å?P(y) ?P(r)¡ÅF(s,r)
{y/s,z/r} ?P(y)¡Å?P(z
{y/z} P(u) ?P(y)
{y/u} NIL
ÓÉÓÚµ¼³öÁË¿Õ×Ӿ䣬¹Ê½áÂÛµÃÖ¤¡£
3.16 ¼ÙÉèÕű»µÁ£¬¹«°²¾ÖÅɳö5¸öÈËÈ¥µ÷²é¡£°¸Çé·ÖÎöʱ£¬Õê²ìÔ±A˵£º¡°ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±B˵£º¡°Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±C˵£º¡°ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±D˵£º¡°ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±£¬Õê²ìÔ±E˵£º¡°Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±¡£Èç¹ûÕâ5¸öÕì²ìÔ±µÄ»°¶¼ÊÇ¿ÉÐŵģ¬Ê¹Óùé½áÑÝÒïÍÆÀíÇó³öËÊǵÁÇÔ·¸¡£
½â£º(1) Ïȶ¨Òåν´ÊºÍ³£Á¿
ÉèC(x)±íʾx×÷°¸£¬Z±íʾÕÔ£¬Q±íʾǮ£¬S±íʾËL±íʾÀî (2) ½«ÒÑÖªÊÂʵÓÃν´Ê¹«Ê½±íʾ³öÀ´
ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Z)¡ÅC(Q) Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Q)¡ÅC(S) ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(S)¡ÅC(L)
ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Z)¡ÄC(S))£¬¼´ ?C (Z) ¡Å?C(S)
Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Q)¡ÄC(L))£¬¼´ ?C (Q) ¡Å?C(L) (3) ½«ËùÒªÇóµÄÎÊÌâÓÃν´Ê¹«Ê½±íʾ³öÀ´£¬²¢ÓëÆä·ñ¶¨È¡ÎöÈ¡¡£ Éè×÷°¸ÕßΪu£¬ÔòÒªÇóµÄ½áÂÛÊÇC(u)¡£½«ÆäÓëÆä·ñ)È¡ÎöÈ¡£¬µÃ£º
? C(u) ¡ÅC(u)
(4) ¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬°´¹é½áÔÀí½øÐйé½á£¬ÆäÐ޸ĵÄÖ¤Ã÷Ê÷ÈçÏ£º
C(Z)¡ÅC(Q) ?C (Z) ¡Å?C(S)
C(Q)¡Å?C(S) C(Q)¡ÅC(S)
?C(u)¡ÅC(uC(Q) {Q/u} C(Q)
Òò´Ë£¬Ç®ÊǵÁÇÔ·¸¡£Êµ¼ÊÉÏ£¬±¾°¸µÄµÁÇÔ·¸²»Ö¹Ò»ÈË¡£¸ù¾Ý¹é½áÔÀí»¹¿ÉÒԵóö£º
C(S)¡ÅC(L) ?C (Q) ¡Å?C(L)
C(S)¡Å?C(Q) C(Q)¡ÅC(S)
?C(u)¡ÅC(uC(S) {S/u} C(S)
Òò´Ë£¬ËïÒ²ÊǵÁÇÔ·¸¡£
3.18 ÉèÓÐ×Ӿ伯£º
{P(x)¡ÅQ(a, b), P(a)¡Å?Q(a, b), ?Q(a, f(a)), ?P(x)¡ÅQ(x, b)} ·Ö±ðÓø÷ÖÖ¹é½á²ßÂÔÇó³öÆä¹é½áʽ¡£
½â£ºÖ§³Ö¼¯²ßÂÔ²»¿ÉÓã¬ÔÒòÊÇûÓÐÖ¸Ã÷Äĸö×Ó¾äÊÇÓÉÄ¿±ê¹«Ê½µÄ·ñ¶¨»¯¼òÀ´µÄ¡£ ɾ³ý²ßÂÔ²»¿ÉÓã¬ÔÒòÊÇ×Ӿ伯ÖÐûÓÐûÓÐÖØÑÔʽºÍ¾ßÓаüÔйØÏµµÄ×Ӿ䡣 µ¥ÎÄ×Ö×Ó¾ä²ßÂԵĹé½á¹ý³ÌÈçÏ£º
?Q(a, f(a)) P(x)¡ÅQ(a, b)
{b/f(a)}
P(a) ?P(x)¡ÅQ(x, b)