È˹¤ÖÇÄܾ­µäϰÌ⼯¼°¸÷ÕÂ×ܽᣨÆÚÄ©¿¼ÊԱر¸£©

´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£

×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º

S={P(x, f(x))¡Å?Q(x, f(x))¡ÅR(x, f(x))}

(4) ¶Ôν´Ê(?x) (?y) (?z)(P(x, y)¡úQ(x, y)¡ÅR(x, z))£¬ÏÈÏûÈ¥Á¬½Ó´Ê¡°¡ú¡±µÃ£º

(?x) (?y) (?z)(?P(x, y)¡ÅQ(x, y)¡ÅR(x, z)) ÔÙÏûÈ¥´æÔÚÁ¿´Ê£¬¼´ÓÃSkolemº¯Êýf(x)Ìæ»»yµÃ£º

(?x) (?y) (?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y)))

´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£

×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º

S={?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y))}

3-13 ÅжÏÏÂÁÐ×Ӿ伯ÖÐÄÄЩÊDz»¿ÉÂú×ãµÄ£º

(1) {?P¡ÅQ, ?Q, P, ?P}

(2) { P¡ÅQ , ?P¡ÅQ, P¡Å?Q, ?P¡Å?Q } (3) { P(y)¡ÅQ(y) , ?P(f(x))¡ÅR(a)}

(4) {?P(x)¡ÅQ(x) , ?P(y)¡ÅR(y), P(a), S(a), ?S(z)¡Å?R(z)} (5) {?P(x)¡ÅQ(f(x),a) , ?P(h(y))¡ÅQ(f(h(y)), a)¡Å?P(z)} (6) {P(x)¡ÅQ(x)¡ÅR(x) , ?P(y)¡ÅR(y), ?Q(a), ?R(b)}

½â£º(1) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º

?P¡ÅQ ?Q

?P P

NIL

(2) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º

P¡ÅQ ?P¡ÅQ P¡Å?Q ?P¡Å?Q

?Q Q

NIL

(3) ²»ÊDz»¿ÉÂú×ãµÄ£¬Ô­ÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (4) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ

(5) ²»ÊDz»¿ÉÂú×ãµÄ£¬Ô­ÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (6) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ

3.14 ¶ÔÏÂÁи÷Ìâ·Ö±ðÖ¤Ã÷GÊÇ·ñΪF1,F2,¡­,FnµÄÂß¼­½áÂÛ£º

(1) F: (?x)(?y)(P(x, y)

G: (?y)(?x)(P(x, y)

(2) F: (?x)(P(x)¡Ä(Q(a)¡ÅQ(b)))

G: (?x) (P(x)¡ÄQ(x))

(3) F: (?x)(?y)(P(f(x))¡Ä(Q(f(y)))

G: P(f(a))¡ÄP(y)¡ÄQ(y)

(4) F1: (?x)(P(x)¡ú(?y)(Q(y)¡ú?L(x.y)))

F2: (?x) (P(x)¡Ä(?y)(R(y)¡úL(x.y))) G: (?x)(R(x)¡ú?Q(x))

(5) F1: (?x)(P(x)¡ú(Q(x)¡ÄR(x)))

F2: (?x) (P(x)¡ÄS(x)) G: (?x) (S(x)¡ÄR(x))

½â£º(1) ÏȽ«FºÍ?G»¯³É×Ӿ伯£º S={P(a,b), ?P(x,b)} ÔÙ¶ÔS½øÐйé½á£º

P(a,b) ?P(x,b)

{a/x} NIL

ËùÒÔ£¬GÊÇFµÄÂß¼­½áÂÛ

(2) ÏȽ«FºÍ?G»¯³É×Ӿ伯

ÓÉFµÃ£ºS1={P(x)£¬(Q(a)¡ÅQ(b))} ÓÉÓÚ?GΪ£º? (?x) (P(x)¡ÄQ(x))£¬¼´

(?x) (? P(x)¡Å? Q(x))£¬

¿ÉµÃ£º S2={? P(x)¡Å? Q(x)}

Òò´Ë£¬À©³äµÄ×Ӿ伯Ϊ£º

S={ P(x)£¬(Q(a)¡ÅQ(b))£¬? P(x)¡Å? Q(x)}

ÔÙ¶ÔS½øÐйé½á£º

Q(a)¡ÅQ(b)

{a/b}

? P(x)¡Å? Q(a)

{a/x}

P(x) ? P(a)

{a/x} NIL

ËùÒÔ£¬GÊÇFµÄÂß¼­½áÂÛ

ͬÀí¿ÉÇóµÃ(3)¡¢(4)ºÍ(5)£¬ÆäÇó½â¹ý³ÌÂÔ¡£

3.15 ÉèÒÑÖª£º

(1) Èç¹ûxÊÇyµÄ¸¸Ç×£¬yÊÇzµÄ¸¸Ç×£¬ÔòxÊÇzµÄ׿¸¸£» (2) ÿ¸öÈ˶¼ÓÐÒ»¸ö¸¸Çס£

ʹÓùé½áÑÝÒïÍÆÀíÖ¤Ã÷£º¶ÔÓÚijÈËu£¬Ò»¶¨´æÔÚÒ»¸öÈËv£¬vÊÇuµÄ׿¸¸¡£

½â£ºÏȶ¨Òåν´Ê

F(x,y)£ºxÊÇyµÄ¸¸Ç× GF(x,z)£ºxÊÇzµÄ׿¸¸ P(x)£ºxÊÇÒ»¸öÈË

ÔÙÓÃν´Ê°ÑÎÊÌâÃèÊö³öÀ´£º

ÒÑÖªF1£º(?x) (?y) (?z)( F(x,y)¡ÄF(y,z))¡úGF(x,z)) F2£º(?y)(P(x)¡úF(x,y))

ÇóÖ¤½áÂÛG£º(?u) (?v)( P(u)¡úGF(v,u)) È»ºóÔÙ½«F1£¬F2ºÍ?G»¯³É×Ӿ伯£º ¢Ù ?F(x,y)¡Å?F(y,z)¡ÅGF(x,z)

¢Ú ?P(r)¡ÅF(s,r)

¢Û P(u)

¢Ü ?GF(v,u))

¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬Æä¹é½áÍÆÀí¹ý³ÌÈçÏ£º

?F(x,y)¡Å?F(y,z)¡ÅGF(x,z) ?GF(v,u)

{x/v,z/u}

?F(x,y)¡Å?F(y,z) ?P(r)¡ÅF(s,r)

{x/s,y/r} ?F(y,z)¡Å?P(y) ?P(r)¡ÅF(s,r)

{y/s,z/r} ?P(y)¡Å?P(z

{y/z} P(u) ?P(y)

{y/u} NIL

ÓÉÓÚµ¼³öÁË¿Õ×Ӿ䣬¹Ê½áÂÛµÃÖ¤¡£

3.16 ¼ÙÉèÕű»µÁ£¬¹«°²¾ÖÅɳö5¸öÈËÈ¥µ÷²é¡£°¸Çé·ÖÎöʱ£¬Õê²ìÔ±A˵£º¡°ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±B˵£º¡°Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±C˵£º¡°ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±D˵£º¡°ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±£¬Õê²ìÔ±E˵£º¡°Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±¡£Èç¹ûÕâ5¸öÕì²ìÔ±µÄ»°¶¼ÊÇ¿ÉÐŵģ¬Ê¹Óùé½áÑÝÒïÍÆÀíÇó³öË­ÊǵÁÇÔ·¸¡£

½â£º(1) Ïȶ¨Òåν´ÊºÍ³£Á¿

ÉèC(x)±íʾx×÷°¸£¬Z±íʾÕÔ£¬Q±íʾǮ£¬S±íʾËL±íʾÀî (2) ½«ÒÑÖªÊÂʵÓÃν´Ê¹«Ê½±íʾ³öÀ´

ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Z)¡ÅC(Q) Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Q)¡ÅC(S) ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(S)¡ÅC(L)

ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Z)¡ÄC(S))£¬¼´ ?C (Z) ¡Å?C(S)

Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Q)¡ÄC(L))£¬¼´ ?C (Q) ¡Å?C(L) (3) ½«ËùÒªÇóµÄÎÊÌâÓÃν´Ê¹«Ê½±íʾ³öÀ´£¬²¢ÓëÆä·ñ¶¨È¡ÎöÈ¡¡£ Éè×÷°¸ÕßΪu£¬ÔòÒªÇóµÄ½áÂÛÊÇC(u)¡£½«ÆäÓëÆä·ñ)È¡ÎöÈ¡£¬µÃ£º

? C(u) ¡ÅC(u)

(4) ¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬°´¹é½áÔ­Àí½øÐйé½á£¬ÆäÐ޸ĵÄÖ¤Ã÷Ê÷ÈçÏ£º

C(Z)¡ÅC(Q) ?C (Z) ¡Å?C(S)

C(Q)¡Å?C(S) C(Q)¡ÅC(S)

?C(u)¡ÅC(uC(Q) {Q/u} C(Q)

Òò´Ë£¬Ç®ÊǵÁÇÔ·¸¡£Êµ¼ÊÉÏ£¬±¾°¸µÄµÁÇÔ·¸²»Ö¹Ò»ÈË¡£¸ù¾Ý¹é½áÔ­Àí»¹¿ÉÒԵóö£º

C(S)¡ÅC(L) ?C (Q) ¡Å?C(L)

C(S)¡Å?C(Q) C(Q)¡ÅC(S)

?C(u)¡ÅC(uC(S) {S/u} C(S)

Òò´Ë£¬ËïÒ²ÊǵÁÇÔ·¸¡£

3.18 ÉèÓÐ×Ӿ伯£º

{P(x)¡ÅQ(a, b), P(a)¡Å?Q(a, b), ?Q(a, f(a)), ?P(x)¡ÅQ(x, b)} ·Ö±ðÓø÷ÖÖ¹é½á²ßÂÔÇó³öÆä¹é½áʽ¡£

½â£ºÖ§³Ö¼¯²ßÂÔ²»¿ÉÓã¬Ô­ÒòÊÇûÓÐÖ¸Ã÷Äĸö×Ó¾äÊÇÓÉÄ¿±ê¹«Ê½µÄ·ñ¶¨»¯¼òÀ´µÄ¡£ ɾ³ý²ßÂÔ²»¿ÉÓã¬Ô­ÒòÊÇ×Ӿ伯ÖÐûÓÐûÓÐÖØÑÔʽºÍ¾ßÓаüÔйØÏµµÄ×Ӿ䡣 µ¥ÎÄ×Ö×Ó¾ä²ßÂԵĹé½á¹ý³ÌÈçÏ£º

?Q(a, f(a)) P(x)¡ÅQ(a, b)

{b/f(a)}

P(a) ?P(x)¡ÅQ(x, b)

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)