化工设备机械基础习题解答

NYNX'GG2TEFCNY' G1NX TEFBRA

RB 第 17 页

第二章 金属的力学性能

第一部分 例题及其解析

2.1计算图2-6所示杆件1-1,2-2,3-3,截面上的内力(轴力),设P=P=100N,

Q=Q’=200N

12P'12P1(a)2Q1Q'2Q(b)P

解[1]: 2-6(a) (1)1-1截面

根据上述法则,该截面上的轴力应等于截面右侧(此右侧外力均属已知, 故取右侧)所有外力即P和Q的代数和。P使1-1截面产生拉伸内力,故

取正值;Q使1-1截面产生压缩内力,故取负值,于是

S1=P-Q=100-200=-100N(压)

S1得负值,表明1-1截面作用着的是压缩轴力。 (2)2-2截面

S2=-Q=-200N(压) 2-6(b)

(1)1-1截面 S1 = +P'= 100N(拉)或

S1 = P - Q +Q'= 100 – 200 + 200 = 100N(拉)

(2)2-2截 S2 = P' -Q' = 100 – 200 = -100N(压)

S2= P – Q = 100 – 200 = -100N(压)

(3)3-3截面 S3= P'-Q'+Q= 100 – 200 + 200 = 100N(拉)

第 18 页

或 S3 = P = 100N(拉)

第二部分 习题及其解答

4. 试求图示各杆1-1,2-2,3-3截面上的轴力。[13]

解:由截面法(截面上轴力等于他右侧所有外力的 代数和且规定拉伸为正,压缩为负)则

图a 截面1—1: S=0

截面2—2: S= - P(压缩) 截面3—3:S+P-P=0 即 S=0

图b 截面1—1: S=P

截面2—2: -S+P-2P=0 即S=-P(压缩) 截面3—3: S=P(拉)

p332p321p3(a)2p122p1p12(b)6 试求图示钢杆两段内横截面上的应力以及杆的总伸长.钢的E值为200×109N/m2,σp=210MPa,σp=240MP.若将拉力P增大至80KN,是否还可算出杆的伸长量?

解:当P=4KN时

第 19 页

4KN80cm题6图40cm

??PA1??P1:??PA2??P2符合虎克定律则Pl1Pl24?103?80?10?24?103?40?10?2??0.05255mm?229?22? ?l1??l1??l2?EA1?EA2?200?109???(2?10)200?10??(8?10)44

当P=80KN时

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@)