a3=a2+3
=3.
a4=a3+(£1)2=4, a5=a4+32=13, ËùÒÔ£¬a3=3,a5=13. (II) a2k+1=a2k+3k
kk
= a2k£1+(£1)+3,
kk
ËùÒÔa2k+1£a2k£1=3+(£1),
££
ͬÀía2k£1£a2k£3=3k1+(£1)k1, ¡¡
a3£a1=3+(£1).
ËùÒÔ(a2k+1£a2k£1)+(a2k£1£a2k£3)+¡+(a3£a1)
££
=(3k+3k1+¡+3)+[(£1)k+(£1)k1+¡+(£1)], Óɴ˵Ãa2k+1£a1=
1
3k1(3£1)+[(£1)k£1], 223k?11?(?1)k?1. ÓÚÊÇa2k+1=22k3k11k£1k3?(£1)£1+(£1)=?(£1)k=1. a2k= a2k£1+(£1)=
2222k
{an}µÄͨÏʽΪ£º µ±nÎªÆæÊýʱ£¬an=3n?122n2?(?1)n?12?1?1; 2 µ±nΪżÊýʱ£¬an?3?(?1)2?1?1.
22n