2004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1Àí¿ÆÊýѧ¼°´ð°¸£¨±ØÐÞ+Ñ¡ÐÞºÓÄϺӱ±É½¶«É½Î÷°²»Õ½­Î÷£©

a3=a2+3

=3.

a4=a3+(£­1)2=4, a5=a4+32=13, ËùÒÔ£¬a3=3,a5=13. (II) a2k+1=a2k+3k

kk

= a2k£­1+(£­1)+3,

kk

ËùÒÔa2k+1£­a2k£­1=3+(£­1),

£­£­

ͬÀía2k£­1£­a2k£­3=3k1+(£­1)k1, ¡­¡­

a3£­a1=3+(£­1).

ËùÒÔ(a2k+1£­a2k£­1)+(a2k£­1£­a2k£­3)+¡­+(a3£­a1)

£­£­

=(3k+3k1+¡­+3)+[(£­1)k+(£­1)k1+¡­+(£­1)], Óɴ˵Ãa2k+1£­a1=

1

3k1(3£­1)+[(£­1)k£­1], 223k?11?(?1)k?1. ÓÚÊÇa2k+1=22k3k11k£­1k3?(£­1)£­1+(£­1)=?(£­1)k=1. a2k= a2k£­1+(£­1)=

2222k

{an}µÄͨÏʽΪ£º µ±nÎªÆæÊýʱ£¬an=3n?122n2?(?1)n?12?1?1; 2 µ±nΪżÊýʱ£¬an?3?(?1)2?1?1.

22n

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)