2004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1Àí¿ÆÊýѧ¼°´ð°¸£¨±ØÐÞ+Ñ¡ÐÞºÓÄϺӱ±É½¶«É½Î÷°²»Õ½­Î÷£©

2004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1 Àí¿ÆÊýѧ£¨±ØÐÞ+Ñ¡ÐÞ¢ò£©

(ºÓÄÏ¡¢ºÓ±±¡¢É½¶«¡¢É½Î÷¡¢°²»Õ¡¢½­Î÷µÈµØÇø)

±¾ÊÔ¾í·ÖµÚI¾í£¨Ñ¡ÔñÌ⣩ºÍµÚII¾í£¨·ÇÑ¡ÔñÌ⣩Á½²¿·Ö. ¹²150·Ö. ¿¼ÊÔʱ¼ä120·ÖÖÓ.

µÚI¾í£¨Ñ¡ÔñÌâ ¹²60·Ö£©

²Î¿¼¹«Ê½£º Èç¹ûʼþA¡¢B»¥³â£¬ÄÇô

ÇòµÄ±íÃæ»ý¹«Ê½

P£¨A+B£©=P£¨A£©+P£¨B£© S=4?R2

Èç¹ûʼþA¡¢BÏ໥¶ÀÁ¢£¬ÄÇô

ÆäÖÐR±íʾÇòµÄ°ëP£¨A¡¤B£©=P£¨A£©¡¤P£¨B£© ¾¶£¬

Èç¹ûʼþAÔÚÒ»´ÎÊÔÑéÖз¢ÉúµÄ¸ÅÂÊÊÇP£¬ÄÇô ÇòµÄÌå»ý¹«Ê½

n´Î¶ÀÁ¢Öظ´ÊÔÑéÖÐÇ¡ºÃ·¢Éúk´ÎµÄ¸ÅÂÊ

V=4?R3P3£¬ n(k)=Ckk£­nP(1£­P)nk

ÆäÖÐR±íʾÇòµÄ°ë¾¶

Ò»¡¢Ñ¡ÔñÌâ £º±¾´óÌâ¹²12СÌ⣬ÿСÌâ6·Ö£¬¹²60 1£®(1£­i)2¡¤i= £¨

A£®2£­2i

B£®2+2i

C£®£­2

D£®2 2£®ÒÑÖªº¯Êýf(x)?lg1?x1?x.Èôf(a)?b.Ôòf(?a)? £¨

A£®b

B£®£­b C£®1D£®£­

1b

b 3£®ÒÑÖªa?¡¢b?¾ùΪµ¥Î»ÏòÁ¿£¬ËüÃǵļнÇΪ60¡ã£¬ÄÇô|a?+3b?|=

£¨

A£®7

B£®10

C£®13 D£®4 4£®º¯Êýy?x?1?1(x?1)µÄ·´º¯ÊýÊÇ

£¨ A£®y=x2£­2x+2(x<1) B£®y=x2£­2x+2(x¡Ý1)

C£®y=x2£­2x (x<1)

D£®y=x2£­2x (x¡Ý1) 5£®(2x3?17x)µÄÕ¹¿ªÊ½Öг£ÊýÏîÊÇ

£¨ £©

£©

£©

£©

£©

A£®14 B£®£­14 C£®42 D£®£­42 6£®ÉèA¡¢B¡¢I¾ùΪ·Ç¿Õ¼¯ºÏ£¬ÇÒÂú×ãA?B ?I£¬ÔòÏÂÁи÷ʽÖдíÎóµÄÊÇ £®£®

A£®(CIA)¡ÈB=I C£®A¡É(CIB)=?

B£®(CIA)¡È(CIB)=I D£®(CIA)?(CIB)= CIB

£¨ £©

x2?y2?1µÄÁ½¸ö½¹µãΪF1¡¢F2£¬¹ýF1×÷´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²Ïཻ£¬Ò»¸ö½»µã 7£®ÍÖÔ²4 ΪP£¬Ôò|PF2|=

A£®

B£®3

£¨ £©

3 2C£®

7 2D£®4

8£®ÉèÅ×ÎïÏßy2=8xµÄ×¼ÏßÓëxÖá½»ÓÚµãQ£¬Èô¹ýµãQµÄÖ±ÏßlÓëÅ×ÎïÏßÓй«¹²µã£¬ÔòÖ±Ïßl µÄбÂʵÄÈ¡Öµ·¶Î§ÊÇ

A£®[£­

C£®[£­1£¬1]

D£®[£­4£¬4]

£¨ £© £¨ £©

11£¬] 22B£®[£­2£¬2]

9£®ÎªÁ˵õ½º¯Êýy?sin(2x?

A£®ÏòÓÒƽÒÆ

?6)µÄͼÏ󣬿ÉÒÔ½«º¯Êýy?cos2xµÄͼÏó

?¸öµ¥Î»³¤¶È 6?C£®Ïò×óƽÒƸöµ¥Î»³¤¶È

6TµÈÓÚ S4B£®

9?¸öµ¥Î»³¤¶È 3?D£®Ïò×óƽÒƸöµ¥Î»³¤¶È

3B£®ÏòÓÒƽÒÆ

10£®ÒÑÖªÕýËÄÃæÌåABCDµÄ±íÃæ»ýΪS£¬ÆäËĸöÃæµÄÖÐÐÄ·Ö±ðΪE¡¢F¡¢G¡¢H.ÉèËÄÃæÌåEFGH

µÄ±íÃæ»ýΪT£¬Ôò

A£®

C£®

£¨ £©

1 91 4D£®

1 311£®´ÓÊý×Ö1£¬2£¬3£¬4£¬5£¬ÖУ¬Ëæ»ú³éÈ¡3¸öÊý×Ö£¨ÔÊÐíÖظ´£©×é³ÉÒ»¸öÈýλÊý£¬Æä¸÷λ

Êý×ÖÖ®ºÍµÈÓÚ9µÄ¸ÅÂÊΪ

A£®

2 C£®

2 £¨ £©

13 125222B£®

16 125218 125D£®

19 125£¨ £©

12£®a?b?1,b?c?2,c?a?2,Ôòab?bc?caµÄ×îСֵΪ

A£®3£­

1 2B£®

1£­3 2C£®£­

1£­3 2D£®

1+3 2

µÚ¢ò¾í£¨·ÇÑ¡ÔñÌâ ¹²90·Ö£©

¶þ¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹²4СÌ⣬ÿСÌâ4·Ö£¬¹²16·Ö.°Ñ´ð°¸ÌîÔÚÌâÖкáÏßÉÏ. 13£®²»µÈʽ|x+2|¡Ý|x|µÄ½â¼¯ÊÇ . 14£®Óɶ¯µãPÏòÔ²x2+y2=1ÒýÁ½ÌõÇÐÏßPA¡¢PB£¬Çеã·Ö±ðΪA¡¢B£¬¡ÏAPB=60¡ã£¬Ôò¶¯µãP

µÄ¹ì¼£·½³ÌΪ .

15£®ÒÑÖªÊýÁÐ{an}£¬Âú×ãa1=1£¬an=a1+2a2+3a3+¡­+(n£­1)an£­1(n¡Ý2)£¬Ôò{an}µÄͨÏî an??n?1?1

n?2?___16£®ÒÑÖªa¡¢bΪ²»´¹Ö±µÄÒìÃæÖ±Ïߣ¬¦ÁÊÇÒ»¸öƽÃ棬Ôòa¡¢bÔÚ¦ÁÉϵÄÉäÓ°ÓпÉÄÜÊÇ .

¢ÙÁ½ÌõƽÐÐÖ±Ïß ¢ÛͬһÌõÖ±Ïß

¢ÚÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß ¢ÜÒ»ÌõÖ±Ïß¼°ÆäÍâÒ»µã

ÔÚÒ»Ãæ½áÂÛÖУ¬ÕýÈ·½áÂ۵ıàºÅÊÇ £¨Ð´³öËùÓÐÕýÈ·½áÂ۵ıàºÅ£©.

Èý¡¢½â´ðÌ⣺±¾´óÌâ¹²6СÌ⣬¹²74·Ö.½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè.

17£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

sin4x?cos4x?sin2xcos2xÇóº¯Êýf(x)?µÄ×îСÕýÖÜÆÚ¡¢×î´óÖµºÍ×îСֵ.

2?sin2x

18£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

Ò»½Ó´ýÖÐÐÄÓÐA¡¢B¡¢C¡¢DËIJ¿ÈÈÏߵ绰£¬ÒÑ֪ijһʱ¿Ìµç»°A¡¢BÕ¼ÏߵĸÅÂʾùΪ0.5£¬µç»°C¡¢DÕ¼ÏߵĸÅÂʾùΪ0.4£¬¸÷²¿µç»°ÊÇ·ñÕ¼ÏßÏ໥֮¼äûÓÐÓ°Ïì.¼ÙÉè¸Ãʱ¿ÌÓЦβ¿µç»°Õ¼Ïß.ÊÔÇóËæ»ú±äÁ¿¦ÎµÄ¸ÅÂÊ·Ö²¼ºÍËüµÄÆÚÍû. 19£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ÒÑÖªa?R,Çóº¯Êýf(x)?xeµÄµ¥µ÷Çø¼ä. 20£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

2ax

Èçͼ£¬ÒÑÖªËÄÀâ׶ P¡ªABCD£¬PB¡ÍAD²àÃæPADΪ±ß³¤µÈÓÚ2µÄÕýÈý½ÇÐΣ¬µ×ÃæABCDΪÁâÐΣ¬²àÃæPADÓëµ×ÃæABCDËù³ÉµÄ¶þÃæ½ÇΪ120¡ã.

£¨I£©ÇóµãPµ½Æ½ÃæABCDµÄ¾àÀ룬

£¨II£©ÇóÃæAPBÓëÃæCPBËù³É¶þÃæ½ÇµÄ´óС.

21£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©

x22ÉèË«ÇúÏßC£º2?y?1(a?0)ÓëÖ±Ïßl:x?y?1ÏཻÓÚÁ½¸ö²»Í¬µÄµãA¡¢B.

a£¨I£©ÇóË«ÇúÏßCµÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£º £¨II£©ÉèÖ±ÏßlÓëyÖáµÄ½»µãΪP£¬ÇÒPA? 22£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©

ÒÑÖªÊýÁÐ{an}ÖÐa1?1£¬ÇÒa2k=a2k£­1+(£­1)K, a2k+1=a2k+3k, ÆäÖÐk=1,2,3,¡­¡­. £¨I£©Çóa3, a5£»

£¨II£©Çó{ an}µÄͨÏʽ.

5PB.ÇóaµÄÖµ. 122004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1 Àí¿ÆÊýѧ£¨±ØÐÞ+Ñ¡ÐÞ¢ò£©

(ºÓÄÏ¡¢ºÓ±±¡¢É½¶«¡¢É½Î÷¡¢°²»Õ¡¢½­Î÷µÈµØÇø)

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)