2004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1 Àí¿ÆÊýѧ£¨±ØÐÞ+Ñ¡ÐÞ¢ò£©
(ºÓÄÏ¡¢ºÓ±±¡¢É½¶«¡¢É½Î÷¡¢°²»Õ¡¢½Î÷µÈµØÇø)
±¾ÊÔ¾í·ÖµÚI¾í£¨Ñ¡ÔñÌ⣩ºÍµÚII¾í£¨·ÇÑ¡ÔñÌ⣩Á½²¿·Ö. ¹²150·Ö. ¿¼ÊÔʱ¼ä120·ÖÖÓ.
µÚI¾í£¨Ñ¡ÔñÌâ ¹²60·Ö£©
²Î¿¼¹«Ê½£º Èç¹ûʼþA¡¢B»¥³â£¬ÄÇô
ÇòµÄ±íÃæ»ý¹«Ê½
P£¨A+B£©=P£¨A£©+P£¨B£© S=4?R2
Èç¹ûʼþA¡¢BÏ໥¶ÀÁ¢£¬ÄÇô
ÆäÖÐR±íʾÇòµÄ°ëP£¨A¡¤B£©=P£¨A£©¡¤P£¨B£© ¾¶£¬
Èç¹ûʼþAÔÚÒ»´ÎÊÔÑéÖз¢ÉúµÄ¸ÅÂÊÊÇP£¬ÄÇô ÇòµÄÌå»ý¹«Ê½
n´Î¶ÀÁ¢Öظ´ÊÔÑéÖÐÇ¡ºÃ·¢Éúk´ÎµÄ¸ÅÂÊ
V=4?R3P3£¬ n(k)=Ckk£nP(1£P)nk
ÆäÖÐR±íʾÇòµÄ°ë¾¶
Ò»¡¢Ñ¡ÔñÌâ £º±¾´óÌâ¹²12СÌ⣬ÿСÌâ6·Ö£¬¹²60 1£®(1£i)2¡¤i= £¨
A£®2£2i
B£®2+2i
C£®£2
D£®2 2£®ÒÑÖªº¯Êýf(x)?lg1?x1?x.Èôf(a)?b.Ôòf(?a)? £¨
A£®b
B£®£b C£®1D£®£
1b
b 3£®ÒÑÖªa?¡¢b?¾ùΪµ¥Î»ÏòÁ¿£¬ËüÃǵļнÇΪ60¡ã£¬ÄÇô|a?+3b?|=
£¨
A£®7
B£®10
C£®13 D£®4 4£®º¯Êýy?x?1?1(x?1)µÄ·´º¯ÊýÊÇ
£¨ A£®y=x2£2x+2(x<1) B£®y=x2£2x+2(x¡Ý1)
C£®y=x2£2x (x<1)
D£®y=x2£2x (x¡Ý1) 5£®(2x3?17x)µÄÕ¹¿ªÊ½Öг£ÊýÏîÊÇ
£¨ £©
£©
£©
£©
£©
A£®14 B£®£14 C£®42 D£®£42 6£®ÉèA¡¢B¡¢I¾ùΪ·Ç¿Õ¼¯ºÏ£¬ÇÒÂú×ãA?B ?I£¬ÔòÏÂÁи÷ʽÖдíÎóµÄÊÇ £®£®
A£®(CIA)¡ÈB=I C£®A¡É(CIB)=?
B£®(CIA)¡È(CIB)=I D£®(CIA)?(CIB)= CIB
£¨ £©
x2?y2?1µÄÁ½¸ö½¹µãΪF1¡¢F2£¬¹ýF1×÷´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²Ïཻ£¬Ò»¸ö½»µã 7£®ÍÖÔ²4 ΪP£¬Ôò|PF2|=
A£®
B£®3
£¨ £©
3 2C£®
7 2D£®4
8£®ÉèÅ×ÎïÏßy2=8xµÄ×¼ÏßÓëxÖá½»ÓÚµãQ£¬Èô¹ýµãQµÄÖ±ÏßlÓëÅ×ÎïÏßÓй«¹²µã£¬ÔòÖ±Ïßl µÄбÂʵÄÈ¡Öµ·¶Î§ÊÇ
A£®[£
C£®[£1£¬1]
D£®[£4£¬4]
£¨ £© £¨ £©
11£¬] 22B£®[£2£¬2]
9£®ÎªÁ˵õ½º¯Êýy?sin(2x?
A£®ÏòÓÒƽÒÆ
?6)µÄͼÏ󣬿ÉÒÔ½«º¯Êýy?cos2xµÄͼÏó
?¸öµ¥Î»³¤¶È 6?C£®Ïò×óƽÒƸöµ¥Î»³¤¶È
6TµÈÓÚ S4B£®
9?¸öµ¥Î»³¤¶È 3?D£®Ïò×óƽÒƸöµ¥Î»³¤¶È
3B£®ÏòÓÒƽÒÆ
10£®ÒÑÖªÕýËÄÃæÌåABCDµÄ±íÃæ»ýΪS£¬ÆäËĸöÃæµÄÖÐÐÄ·Ö±ðΪE¡¢F¡¢G¡¢H.ÉèËÄÃæÌåEFGH
µÄ±íÃæ»ýΪT£¬Ôò
A£®
C£®
£¨ £©
1 91 4D£®
1 311£®´ÓÊý×Ö1£¬2£¬3£¬4£¬5£¬ÖУ¬Ëæ»ú³éÈ¡3¸öÊý×Ö£¨ÔÊÐíÖظ´£©×é³ÉÒ»¸öÈýλÊý£¬Æä¸÷λ
Êý×ÖÖ®ºÍµÈÓÚ9µÄ¸ÅÂÊΪ
A£®
2 C£®
2 £¨ £©
13 125222B£®
16 125218 125D£®
19 125£¨ £©
12£®a?b?1,b?c?2,c?a?2,Ôòab?bc?caµÄ×îСֵΪ
A£®3£
1 2B£®
1£3 2C£®£
1£3 2D£®
1+3 2
µÚ¢ò¾í£¨·ÇÑ¡ÔñÌâ ¹²90·Ö£©
¶þ¡¢Ìî¿ÕÌ⣺±¾´óÌâ¹²4СÌ⣬ÿСÌâ4·Ö£¬¹²16·Ö.°Ñ´ð°¸ÌîÔÚÌâÖкáÏßÉÏ. 13£®²»µÈʽ|x+2|¡Ý|x|µÄ½â¼¯ÊÇ . 14£®Óɶ¯µãPÏòÔ²x2+y2=1ÒýÁ½ÌõÇÐÏßPA¡¢PB£¬Çеã·Ö±ðΪA¡¢B£¬¡ÏAPB=60¡ã£¬Ôò¶¯µãP
µÄ¹ì¼£·½³ÌΪ .
15£®ÒÑÖªÊýÁÐ{an}£¬Âú×ãa1=1£¬an=a1+2a2+3a3+¡+(n£1)an£1(n¡Ý2)£¬Ôò{an}µÄͨÏî an??n?1?1
n?2?___16£®ÒÑÖªa¡¢bΪ²»´¹Ö±µÄÒìÃæÖ±Ïߣ¬¦ÁÊÇÒ»¸öƽÃ棬Ôòa¡¢bÔÚ¦ÁÉϵÄÉäÓ°ÓпÉÄÜÊÇ .
¢ÙÁ½ÌõƽÐÐÖ±Ïß ¢ÛͬһÌõÖ±Ïß
¢ÚÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß ¢ÜÒ»ÌõÖ±Ïß¼°ÆäÍâÒ»µã
ÔÚÒ»Ãæ½áÂÛÖУ¬ÕýÈ·½áÂ۵ıàºÅÊÇ £¨Ð´³öËùÓÐÕýÈ·½áÂ۵ıàºÅ£©.
Èý¡¢½â´ðÌ⣺±¾´óÌâ¹²6СÌ⣬¹²74·Ö.½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè.
17£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
sin4x?cos4x?sin2xcos2xÇóº¯Êýf(x)?µÄ×îСÕýÖÜÆÚ¡¢×î´óÖµºÍ×îСֵ.
2?sin2x
18£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
Ò»½Ó´ýÖÐÐÄÓÐA¡¢B¡¢C¡¢DËIJ¿ÈÈÏߵ绰£¬ÒÑ֪ijһʱ¿Ìµç»°A¡¢BÕ¼ÏߵĸÅÂʾùΪ0.5£¬µç»°C¡¢DÕ¼ÏߵĸÅÂʾùΪ0.4£¬¸÷²¿µç»°ÊÇ·ñÕ¼ÏßÏ໥֮¼äûÓÐÓ°Ïì.¼ÙÉè¸Ãʱ¿ÌÓЦβ¿µç»°Õ¼Ïß.ÊÔÇóËæ»ú±äÁ¿¦ÎµÄ¸ÅÂÊ·Ö²¼ºÍËüµÄÆÚÍû. 19£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖªa?R,Çóº¯Êýf(x)?xeµÄµ¥µ÷Çø¼ä. 20£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
2ax
Èçͼ£¬ÒÑÖªËÄÀâ׶ P¡ªABCD£¬PB¡ÍAD²àÃæPADΪ±ß³¤µÈÓÚ2µÄÕýÈý½ÇÐΣ¬µ×ÃæABCDΪÁâÐΣ¬²àÃæPADÓëµ×ÃæABCDËù³ÉµÄ¶þÃæ½ÇΪ120¡ã.
£¨I£©ÇóµãPµ½Æ½ÃæABCDµÄ¾àÀ룬
£¨II£©ÇóÃæAPBÓëÃæCPBËù³É¶þÃæ½ÇµÄ´óС.
21£®£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
x22ÉèË«ÇúÏßC£º2?y?1(a?0)ÓëÖ±Ïßl:x?y?1ÏཻÓÚÁ½¸ö²»Í¬µÄµãA¡¢B.
a£¨I£©ÇóË«ÇúÏßCµÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£º £¨II£©ÉèÖ±ÏßlÓëyÖáµÄ½»µãΪP£¬ÇÒPA? 22£®£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
ÒÑÖªÊýÁÐ{an}ÖÐa1?1£¬ÇÒa2k=a2k£1+(£1)K, a2k+1=a2k+3k, ÆäÖÐk=1,2,3,¡¡. £¨I£©Çóa3, a5£»
£¨II£©Çó{ an}µÄͨÏʽ.
5PB.ÇóaµÄÖµ. 122004Äê¸ß¿¼ÊÔÌâÈ«¹ú¾í1 Àí¿ÆÊýѧ£¨±ØÐÞ+Ñ¡ÐÞ¢ò£©
(ºÓÄÏ¡¢ºÓ±±¡¢É½¶«¡¢É½Î÷¡¢°²»Õ¡¢½Î÷µÈµØÇø)