混凝土结构设计规范

2四边支承的板应按下列规定计算:

1)当长边与短边长度之比小于或等于2.0时,应按双向板计算; 2)当长边与短边长度之比大于2.0,但小于3.0时,宜按双向板计算;当按沿短边方向受力的单向板计算时,应沿长边方向布置足够数量的构造钢筋;

3)当长边与短边长度之比大于或等于3.0时,可按沿短边方向受力的单向板计算。

第10.1.3条 当多跨单向板、多跨双向板采用分离式配筋时,跨中正弯矩钢筋宜全部伸入支座;支座负弯矩钢筋向跨内的延伸长度应覆盖负弯矩图并满足钢筋锚固的要求。

第10.1.4条 板中受力钢筋的间距,当板厚h≤150mm时,不宜大于200mm;当板厚h>150mm时,不宜大于1.5h,且不宜大于250mm。 第10.1.5条 简支板或连续板下部纵向受力钢筋伸入支座的锚固长度不应小于5d,d为下部纵向受力钢筋的直径。当连续板内温度、收缩应力较大时,伸入支座的锚固长度宜适当增加。

第10.1.6条 当现浇板的受力钢筋与梁平行时,应沿梁长度方向配置间距不大于200mm且与梁垂直的上部构造钢筋,其直径不宜小于8mm,且单位长度内的总截面面积不宜小于板中单位宽度内受力钢筋截面面积的三分之一。该构造钢筋伸入板内的长度从梁边算起每边不宜小于板计算跨度l0的四分之一(图10.1.6)。

第10.1.7条 对与支承结构整体浇筑或嵌固在承重砌体墙内的现浇混凝土板,应沿支承周边配置上部构造钢筋,其直径不宜小于8mm,间距不宜大于200mm,并应符合下列规定:

1现浇楼盖周边与混凝土梁或混凝土墙整体浇筑的单向板或双向板,应在板边上部设置垂直于板边的构造钢筋,其截面面积不宜小于板跨中相应方向纵向钢筋截面面积的三分之一;该钢筋自梁边或墙边伸入板内的长度,在单向板中不宜小于受力方向板计算跨度的五分之一;在双向板中不宜小于板短跨方向计算跨度的四分之一;在板角处该钢筋应沿两个垂直方向布置或按放射状布置;当柱角或墙的阳角突出到板内且尺寸较大时,亦应沿柱边或墙阳角边布置构造钢筋,该构造钢筋伸入板内的长度应从柱边或墙边算起。上述上部构造钢筋应按受拉钢筋锚固在梁内、墙内或柱内; 2嵌固在砌体墙内的现浇混凝土板,其上部与板边垂直的构造钢筋伸入板内的长度,从墙边算起不宜小于板短边跨度的七分之一;在两边嵌固于墙内的板角部分,应配置双向上部构造钢筋,该钢筋伸入板内的长度从墙边算起不宜小于板短边跨度的四分之一;沿板的受力方向配置的上部构造钢筋,其截面面积不宜小于该方向跨中受力钢筋截面面积的三分之一;沿非受力方向配置的上部构造钢筋,可根据经验适当减少。

第10.1.8条 当按单向板设计时,除沿受力方向布置受力钢筋外,尚应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不宜小于单位宽度上受力钢筋截面面积的15%,且不宜小于该方向板截面面积的0.15%;分布钢筋的间距不宜大于250mm,直径不宜小于6mm;对集中荷载较大的情况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm. 注:当有实践经验或可靠措施时,预制单向板的分布钢筋可不受本条限制。

第10.1.9条 在温度、收缩应力较大的现浇板区域内,钢筋间距宜取为150-200mm,并应在板的末配筋表面布置温度收缩钢筋,板的上、下表面沿纵、横两个方向的配筋率均不宜小于0.1%。

温度收缩钢筋可利用原有钢筋贯通布置,也可另行设置构造钢筋网,并与原有钢筋按受拉钢筋的要求搭接或在周边构件中锚固。

第10.1.10条 混凝土板中配置抗冲切箍筋或弯起钢筋时,应符合下列构造要求:

1板的厚度不应小于150mm;

2按计算所需的箍筋及相应的架立钢筋应配置在与45°冲切破坏锥面相交的范围内,且从集中荷载作用面或柱截面边缘向外的分布长度不应小于1.5h0(图10.1.10a);箍筋应做成封闭式,直径不应小于6mm,间距不应大于h0/3;

3按计算所需弯起钢筋的弯起角度可根据板的厚度在30°-45°之间选取;弯起钢筋的倾斜段应与冲切破坏锥面相交(图10.1.10b),其交点应在集中荷载作用面或柱截面边缘以外(1/2-2/3)h的范围内。弯起钢筋直径不宜小于12mm,且每一方向不宜小于3根。

第10.1.11条 对卧置于地基上的基础筏板,当板的厚度h>2m时,除应沿板的上、下表面布置纵、横方向的钢筋外,尚宜沿板厚度方向间距不超过1m设置与板面平行的构造钢筋网片,其直径不宜小于12mm,纵横方向的间距不宜大于200mm.

第10.1.12条 当板中采用钢筋焊接网片配筋时,应符合国家现行有关标准的规定。

第11章 混凝土结构构件抗震设计

11.1 一般规定

附录A 素混凝土结构构件计算

A.1 一般规定

附录B 钢筋的公称截面面积、计算截面面积及理论重量 附录C 混凝土的多轴强度和本构关系 C.1 总则

第附录C.1.1条 混凝土的多轴强度和本构关系可采用下列方法确定:

1制作试件并通过试验测定: 2选择合理形式的数学模型,由试验标定其中所需的参数值; 3采用经过试验验证或工程经验证明可行的数学模型。 第附录C.1.2条 本附录中所给出的各种数学模型适用于下述条件:混凝土强度等级C20-C80;混凝土质量密度2200-2400kg/m;正常温度、湿度环境;正常加载速度。 第附录C.1.3条 本附录中,混凝土的应力-应变曲线和多轴强度均按相对值ζ/fc、ε/εc、ζ/ft、ε/εt、f3/fc和f1/ft等给出。其中,分母为混凝土的单轴强度(fc或ft)和相应的峰值应变(εc或εt)。 根据结构分析方法和极限状态验算的需要,单轴强度(fc或ft)可分别取为标准值(fck或ftk)、设计值(fc或ft)或平均值(fcm或ftm)。其中,平均值应按下列公式计算: fcm=fck/(1-1.645δc) ftm=ftk/(1-1.645δt) 式中 δc、δt--混凝土抗压强度、抗拉强度的变异系数,宜根据试验统计确定。 C.2 单轴应力-应变关系 第附录C.2.1条 混凝土单轴受压的应力-应变曲线方程可按下列公式确定(图C.2.1): 当x≤1时 y=αax+(3-2αa)x+(αa-2)x 当x>1时 y=x/[αd(x-1)+x] (C.2.1-2) (C.2.1-1) (C.1.3-1) (C.1.3-2) x=ε/εc y=ζ/fc (C.2.1-3) (C.2.1-4) 式中 αa、αd--单轴受压应力-应变曲线上升段、下降段的参数值,按表C.2.1采用; fc--混凝土的单轴抗压强度(fck、fc或fcm); εc--与fc相应的混凝土峰值压应变,按表C.2.1采用。 混凝土单轴受压应力-应变曲线的参数值 表C.2.1 f1223344556c5 0 5 0 5 0 5 0 5 0 (N/mm) εc(×10) 1370 1470 1560 1640 1720 1790 1850 1920 1980 2α20a .320 1 2.15 2.09 2.03 1.96 1.90

联系客服:779662525#qq.com(#替换为@)