9.关于最短路,以下叙述(ACDE)不正确。
A从起点出发到终点的最短路是唯一的。B.从起点出发到终点的最短路不一定是唯一的,但其最短路线的长度是确定的。C.从起点出发的有向边中的最小权边,一定包含在起点到终点的最短路上D.从起点出发的有向边中的最大权边,一定不包含在起点到终点的最短路上。 E.整个网络的最大权边的一定不包含在从起点到终点的最短路线上。
10.关于增广路,以下叙述(BC)正确。
A.增广路是一条从发点到收点的有向路,这条路上各条边的方向必一致。B.增广路是一条从发点到收点的有向路,这条路上各条边的方向可不一致。C.增广路上与发点到收点方向一致的边必须是非饱和边,方向相反的边必须是流量大于零的边。D.增广路上与发点到收点方向一致的边必须是流量小于容量的边,方向相反的边必须是流量等于零的边。E.增广路上与发点到收点方向一致的边必须是流量为零的边,方向相反的边必须是流量大于零的边。 四、名词解释
1、树:在图论中,具有连通和不含圈特点的图称为树。 2.权:在图中,边旁标注的数字称为权。
3.网络:在图论中,给边或有向边赋了权的图称为网络
4.最大流问题:最大流问题是指在网络图中,在单位时间内,从发点到收点的最大流量 5.最大流问题中流量:最大流问题中流量是指单位时间的发点的流出量或收点的流入量。 6.容量:最大流问题中,每条有向边单位时间的最大通过能力称为容量 7.饱合边:容量与流量相等的有向边称为饱合边。 8零流边:流量为零的有向边称为零流边
9.生成树:若树T是无向图G的生成树,则称T是G 的生成树。.。 10根:有向图G中可以到达图中任一顶点的顶点u称为G的根。 11枝:树中的边称为枝。
12.平行边:具有相同端点的边叫平行边。
13根树:若有向图G有根u,且它的基本图是一棵树,则称G为以u为根的根树。 四、计算题
1.下图是6个城市的交通图,为将部分道路改造成高速公路,使各个城市均能通达,又要使高速公路的总长度最小,应如何做?最小的总长度是多少?
2.对下面的两个连通图,试分别求出最小树。
3、 第1题中的交通图,求城市A到D沿公路走的最短路的路长及路径。
4.对下面两图,试分别求出从起点到终点的最短路线。
5.分别求出下面两图中从发点到收点的最大流。每条有向边上的数字为该边的容量限制。
6.下面网络中,点①,②是油井,点⑥是原油脱水处理厂,点③、④、⑤是泵站,各管道的每小时最大通过能力(吨/小时)如有向边上的标注。求从油井①、②每小时能输送到脱水处理厂的最大流量。
(提示:虚设一个发点S,令有向边(S,1),(S,2)的容量为∞)。
名词
十一章
1、 需求:需求就是库存的输出。
2、 存贮费:一般是指每存贮单位物资单位时间所需花费的费用。 3、 缺货损失费:一般指由于中断供应影响生产造成的损失赔偿费。
4、 订货批量Q:存贮系统根据需求,为补充某种物资的库存而向供货厂商一次订货或采购的数量。 5、 订货间隔期T:两次订货的时间间隔可订货合同中规定的两次进货之间的时间间隔。
6、 记账间隔期R:指库存记账制度中的间隔记账制所规定的时间。 十二章
1、 预测:是决策的基础,它借助于经济学、概率论与数理统计、现代管理科学、系统论和计算机科学等
所提供的理论及方法,通过适当的模型技术,分析和预测研究对象的发展趋势。 十三章
1、 决策:凡是根据预定目标而采取某种行动方案所作出的选择或决定就称为决策。
2、 单纯选优决策:是指根据已掌握的数据,不需再加工计算,或仅进行方案指标值的简单计算,通过比
较便可以直接选出最优方案的决策方法。
3、 模型选优决策:是在决策对象的客观状态完全确定的条件下,建立一定的符合实际经济状况的数学模
型,进而通过对模型的求解来选择最优方案的方法。
4、 非确定型决策:是一种在决策分析过程中,对决策方案付诸实施后可能遇到的客观状态,虽然能够进
行估计,但却无法确定每一种客观状态出现的概率的决策。
5、 风险型决策:是一种在分析过程中,对方案付诸实施后可能遇到的客观状态,不仅在决策分析时能够
加以估计,而且对每一种状态出现的概率大小也有所掌握。
6、 决策树:就是对一个决策问题画一张图,用更容易了解的形式来表示有关信息。 十四章
1、 排队论:排队论所讨论的是一个系统对一群体提供某种服务时该群体占用此服务系统时所呈现的状态。 2、 排队规则:是描述顾客来到服务系统时,服务机构是否充许,顾客是否愿意排队,在排队等待情形下
服务的顺序。
3、 M/G/1排队系统:是单服务台系统,其顾客到达服从参数为λ的泊松分布,服务时间属一般分布。 随机排队模型:称服务员个数为随机变量的排队系统为随机排队服务系统,相应的模型为随机排队模型。
一、(10分)某咨询公司,受厂商委托,对新上市的一种新产品进行消费者反映的调查。该公司采用了挨户调查的方法,委托他们调查的厂商以及该公司的市场研究专家对该调查提出下列几点要求:
(1)必须调查2000户人家;
(2)在晚上调查的户数和白天调查的户数相等;
(3)至少应调查700户有孩子的家庭;
(4)至少应调查450户无孩子的家庭。
每会见一户家庭,进行调查所需费用为
家庭 有孩子 无孩子 白天会见 25元 20元 晚上会见 30元 24元 问为使总调查费用最少,应调查各类家庭的户数是多少?(只建立模型)
二、(10分)
某公司受委托,准备把120万元投资两种基金A和B,其中A基金的每单位投资额为50元,年回报率为10%,B基金的每单位投资额为100元,年回报率为4%。委托人要求在每年的年回报金额至少达到6万元的基础上要求投资风险最小。据测定每单位A基金的投资风险指数为8,每单位B基金的投资风险指数为3,投资风险指数越大表明投资风险越大。委托人要求在B基金中的投资额不少于30万元。为了使总的投资风险最小,该公司应该在基金A和基金B中各投资多少单位?这时每年的回报金额是多少?
为求该解问题,设
可以建立下面的线性规划模型
使用《管理运筹学》软件,求得计算机解如下图所示,
最优解
目标函数值 = 62000.000
变量值相差值
x1 4000.000 0.000
x2 10000.000 0.000
3
约束松驰/剩余变量对偶价格
1 0.000 0.057
2 0.000 -2.167
3 7000.000 0.000
目标系数范围