2、把多项式2πr-1+3πr3-π2r2按r升幂排列。
2
【提示】:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π、3π。 3、把多项式a3-b3-3a2b+3ab2重新排列。 (1)按a升幂排列;
(2)按a降幂排列。
4、把多项式x4-y4+3x3y-2xy2-5x2y3用适当的方式排列。
(1)按字母x的升幂排列得: ; (2)按字母y的升幂排列得: 。 【注意】:
(1)重新排列多项式时,每一项一定要连同它的符号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。
5.一个三位数百位数字是a,十位数字是b,个位数字是c 则这个三位数表示为 ;
6.课堂练习书P61习题8,9,10,11题
三.学习小结
四.作业。书P60习题4,5,6,7,题
第四学时 整式的加减(1)
学习内容:
教科书第63—64页,2.2整式的加减:(1)同类项。
学习目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流的能力。 3.初步体会数学与人类生活的密切联系。
学习重点和难点:
重点:理解同类项的概念。 难点:根据同类项的概念在多项式中找同类项。 一、自主学习
1、问题;每本练习本x元,小明买5本,小红买3本,两人一共花了多少钱?小明比小红多花多少钱?
用代数式表示以上问题;(用两种表示方法)
2、运用有理数的运算定律填空:
100×2+252×2=( ) 100×(-2)+252×(-2)=( ) 100t+252t=( )
你发现什么规侓了吗?与同伴交流一下。
3、用发现的规律填空:
(1)100t-252t=( ) t (2)3x2y+2x2y=( ) x2y (3)3mn2--4mn2=( ) mn2
4.同类项的定义:
我们常常把具有相同特征的事物归为一类。比如多项式的项100t和-252t可以归为一类,3x2y、2x2y可以归为一类,3 mn2、-4mn2可以归为一类,5a与9a也可以归为一类,还有、0与也可以归为一类。3x2y与2x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地3mn2、4mn2,也只有系数不同,各自所含的字母都是m、n,并且m的指数都是1,n的指数都是2。 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做
35同类项。另外,所有的常数项都是同类项。比如,前面提到的8、0与也是同类项。
93859二、合作探究
1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( ) (3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( ) (5)23与32是同类项。 ( ) 2、指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
3、k取何值时,3xky与-x2y是同类项?
4、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
三、学习小结:
四、课堂作业:若2amb8与a3b2m+3n是同类项,求m与n的值。
13153416133213
第五学时 整式的加减(2)
学习内容:
教科书第64—66页,2.2整式的加减:2.合并同类项。
学习目的和要求:
1.理解合并同类项的概念,掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。 3.渗透分类和类比的思想方法。
4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
学习重点和难点:
重点:正确合并同类项。 难点:找出同类项并正确的合并。 一、自主学习
1、问题:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问:
①他们两次共买了多少本软面抄和多少支水笔? ②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
2.合并同类项的定义:
【提示】(讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
二、合作探究
1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并用交换律、结合律、分配律合并同类项。
根据以上合并同类项的实例,讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
2、下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0。