Ê®Äê¸ß¿¼ÕæÌâ·ÖÀà»ã±à(2010-2019) Êýѧ רÌâ04 µ¼ÊýÓ붨»ý·Ö ÎÞ´ð°¸Ô­¾í°æ

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦

³Æº¯Êýf(x)¾ßÓÐMÐÔÖÊ.ÏÂÁк¯ÊýÖÐËùÓоßÓÐMÐÔÖʵĺ¯ÊýµÄÐòºÅΪ . ¢Ùf(x)=2 ¢Úf(x)=3 ¢Ûf(x)=x ¢Üf(x)=x+2

-x

-x

3

2

36.(2017¡¤½­ËÕ¡¤T11)ÒÑÖªº¯Êýf(x)=x-2x+e-,ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý.Èôf(a-1)+f(2a)¡Ü0,ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ .

37.(2016¡¤È«¹ú2¡¤ÀíT16)ÈôÖ±Ïßy=kx+bÊÇÇúÏßy=ln x+2µÄÇÐÏß,Ò²ÊÇÇúÏßy=ln(x+1)µÄÇÐÏß,Ôòb= . 38.(2015¡¤È«¹ú1¡¤ÎÄT14)ÒÑÖªº¯Êýf(x)=ax+x+1µÄͼÏóÔÚµã(1,f(1))´¦µÄÇÐÏß¹ýµã(2,7),Ôòa= . 39.(2015¡¤È«¹ú2¡¤ÎÄT16)ÒÑÖªÇúÏßy=x+ln xÔÚµã(1,1)´¦µÄÇÐÏßÓëÇúÏßy=ax+(a+2)x+1ÏàÇÐ,Ôòa= .

2

3

3x2

40.(2015¡¤ÉÂÎ÷¡¤ÀíT15)ÉèÇúÏßy=eÔÚµã(0,1)´¦µÄÇÐÏßÓëÇúÏßy= (x>0)ÉϵãP´¦µÄÇÐÏß´¹Ö±,ÔòPµÄ×ø±êΪ .

41.(2015¡¤Ìì½ò,Àí11)ÇúÏßy=xÓëÖ±Ïßy=xËùΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ______________.

42.(2015¡¤ÉÂÎ÷¡¤ÀíT16)Èçͼ,Ò»ºá½ØÃæÎªµÈÑüÌÝÐεÄË®Çþ,ÒòÄàɳ³Á»ý,µ¼ÖÂË®Çþ½ØÃæ±ß½ç³ÊÅ×ÎïÏßÐÍ(ͼÖÐÐéÏßËùʾ),ÔòԭʼµÄ×î´óÁ÷Á¿Ó뵱ǰ×î´óÁ÷Á¿µÄ±ÈֵΪ .

43.(2012¡¤ÉϺ£¡¤ÀíT13)ÒÑÖªº¯Êýy=f(x)µÄͼÏóÊÇÕÛÏß¶ÎABC,ÆäÖÐ

2

x

A(0,0),B,C(1,0).º¯Êýy=xf(x)(0¡Üx¡Ü1)µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄ

Ãæ»ýΪ________________.

44.(2012¡¤È«¹ú¡¤ÎÄT13)ÇúÏßy=x(3ln x+1)ÔÚµã(1,1)´¦µÄÇÐÏß·½³ÌΪ .

45.(2012¡¤É½¶«¡¤ÀíT15)Éèa>0.ÈôÇúÏßy=

ÓëÖ±Ïßx=a,y=0ËùΧ³É·â±ÕͼÐεÄÃæ»ýΪa,Ôòa=.

3

2

2

46.(2019¡¤È«¹ú3¡¤ÎÄT20)ÒÑÖªº¯Êýf(x)=2x-ax+2. (1)ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ;

(2)µ±0

,x>0.

(1)µ±a=-ʱ,Çóº¯Êýf(x)µÄµ¥µ÷Çø¼ä; (2)¶ÔÈÎÒâx¡Ê

,+¡Þ¾ùÓÐf(x)¡Ü,ÇóaµÄȡֵ·¶Î§.

×¢:e=2.718 28¡­Îª×ÔÈ»¶ÔÊýµÄµ×Êý.

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦

5

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦

48.(2019¡¤È«¹ú2,ÎÄ21,12·Ö,ÄѶÈ)ÒÑÖªº¯Êýf(x)=(x-1)ln x-x-1.Ö¤Ã÷: (1)f(x)´æÔÚΨһµÄ¼«Öµµã;

(2)f(x)=0ÓÐÇÒ½öÓÐÁ½¸öʵ¸ù,ÇÒÁ½¸öʵ¸ù»¥Îªµ¹Êý.

49.(2019¡¤½­ËÕ,19,16·Ö,ÄѶÈ)É躯Êýf(x)=(x-a)(x-b)(x-c),a,b,c¡ÊR,f'(x)Ϊf(x)µÄµ¼º¯Êý. (1)Èôa=b=c,f(4)=8,ÇóaµÄÖµ;

(2)Èôa¡Ùb,b=c,ÇÒf(x)ºÍf'(x)µÄÁãµã¾ùÔÚ¼¯ºÏ{-3,1,3}ÖÐ,Çóf(x)µÄ¼«Ð¡Öµ;

(3)Èôa=0,0

(2)ÊÇ·ñ´æÔÚa,b,ʹµÃf(x)ÔÚÇø¼ä[0,1]µÄ×îСֵΪ-1ÇÒ×î´óֵΪ1?Èô´æÔÚ,Çó³öa,bµÄËùÓÐÖµ;Èô²»´æÔÚ,˵Ã÷ÀíÓÉ.

51.(2019¡¤Ìì½ò¡¤ÀíT20)É躯Êýf(x)=ecos x,g(x)Ϊf(x)µÄµ¼º¯Êý. (1)Çóf(x)µÄµ¥µ÷Çø¼ä; (2)µ±x¡Ê

ʱ,Ö¤Ã÷f(x)+g(x)

-x¡Ý0;

x

3

2

(3)ÉèxnΪº¯Êýu(x)=f(x)-1ÔÚÇø¼ä2n¦Ð+,2n¦Ð+ÄÚµÄÁãµã,ÆäÖÐn¡ÊN,Ö¤Ã÷2n¦Ð+-xn<.

52.(2019¡¤È«¹ú1¡¤ÀíT20)ÒÑÖªº¯Êýf(x)=sin x-ln(1+x),f'(x)Ϊf(x)µÄµ¼Êý.Ö¤Ã÷:

(1)f'(x)ÔÚÇø¼ä´æÔÚΨһ¼«´óÖµµã;

(2)f(x)ÓÐÇÒ½öÓÐ2¸öÁãµã.

53.(2019¡¤È«¹ú1¡¤ÎÄT20)ÒÑÖªº¯Êýf(x)=2sin x-xcos x-x,f'(x)Ϊf(x)µÄµ¼Êý. (1)Ö¤Ã÷:f'(x)ÔÚÇø¼ä(0,¦Ð)´æÔÚΨһÁãµã; (2)Èôx¡Ê[0,¦Ð]ʱ,f(x)¡Ýax,ÇóaµÄȡֵ·¶Î§.

54.(2019¡¤È«¹ú2¡¤ÀíT20)ÒÑÖªº¯Êýf(x)=ln x-.

(1)ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ,²¢Ö¤Ã÷f(x)ÓÐÇÒ½öÓÐÁ½¸öÁãµã;

(2)Éèx0ÊÇf(x)µÄÒ»¸öÁãµã,Ö¤Ã÷ÇúÏßy=ln xÔÚµãA(x0,ln x0)´¦µÄÇÐÏßÒ²ÊÇÇúÏßy=eµÄÇÐÏß. 55.(2019¡¤Ìì½ò¡¤ÎÄT20)É躯Êýf(x)=ln x-a(x-1)e,ÆäÖÐa¡ÊR.

x

x

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 6

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦

(1)Èôa¡Ü0,ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ;

(2)Èô0

¢ÙÖ¤Ã÷f(x)Ç¡ÓÐÁ½¸öÁãµã;

¢ÚÉèx0Ϊf(x)µÄ¼«Öµµã,x1Ϊf(x)µÄÁãµã,ÇÒx1>x0,Ö¤Ã÷3x0-x1>2. 56.(2018¡¤È«¹ú2¡¤ÀíT21)ÒÑÖªº¯Êýf(x)=e-ax. (1)Èôa=1,Ö¤Ã÷:µ±x¡Ý0ʱ,f(x)¡Ý1; (2)Èôf(x)ÔÚ(0,+¡Þ)Ö»ÓÐÒ»¸öÁãµã,Çóa.

x

2

57.(2018¡¤È«¹ú2¡¤ÎÄT21¶È)ÒÑÖªº¯Êýf(x)=x-a(x+x+1). (1)Èôa=3,Çóf(x)µÄµ¥µ÷Çø¼ä; (2)Ö¤Ã÷:f(x)Ö»ÓÐÒ»¸öÁãµã.

58.(2018¡¤Ìì½ò¡¤ÀíT20)ÒÑÖªº¯Êýf(x)=a,g(x)=logax,ÆäÖÐa>1. (1)Çóº¯Êýh(x)=f(x)-xln aµÄµ¥µ÷Çø¼ä;

(2)ÈôÇúÏßy=f(x)ÔÚµã(x1,f(x1))´¦µÄÇÐÏßÓëÇúÏßy=g(x)ÔÚµã(x2,g(x2))

x

32

´¦µÄÇÐÏ߯½ÐÐ,Ö¤Ã÷x1+g(x2)=-;

(3)Ö¤Ã÷µ±a¡Ýʱ,´æÔÚÖ±Ïßl,ʹlÊÇÇúÏßy=f(x)µÄÇÐÏß,Ò²ÊÇÇúÏßy=g(x)µÄÇÐÏß.

59.(2018¡¤Ìì½ò¡¤ÎÄT20)É躯Êýf(x)=(x-t1)(x-t2)(x-t3),ÆäÖÐt1,t2,t3¡ÊR,ÇÒt1,t2,t3Êǹ«²îΪdµÄµÈ²îÊýÁÐ.

(1)Èôt2=0,d=1,ÇóÇúÏßy=f(x)ÔÚµã(0,f(0))´¦µÄÇÐÏß·½³Ì; (2)Èôd=3,Çóf(x)µÄ¼«Öµ;

(3)ÈôÇúÏßy=f(x)ÓëÖ±Ïßy=-(x-t2)-6

ÓÐÈý¸ö»¥ÒìµÄ¹«¹²µã,ÇódµÄȡֵ·¶Î§.

2

x

60.(2018¡¤±±¾©¡¤ÀíT18ÎÄT19)É躯Êýf(x)=[ax-(4a+1)x+4a+3]e. (1)ÈôÇúÏßy=f(x)ÔÚµã(1,f(1))´¦µÄÇÐÏßÓëxÖáÆ½ÐÐ,Çóa; (2)Èôf(x)ÔÚx=2´¦È¡µÃ¼«Ð¡Öµ,ÇóaµÄȡֵ·¶Î§.

61.(2018¡¤½­ËÕ¡¤T19)¼Çf'(x),g'(x)·Ö±ðΪº¯Êýf(x),g(x)µÄµ¼º¯Êý.Èô´æÔÚx0¡ÊR,Âú×ãf(x0)=g(x0),ÇÒf'(x0)=g'(x0),Ôò³Æx0Ϊº¯Êýf(x)Óëg(x)µÄÒ»¸ö¡°Sµã¡±.

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 7

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦

(1)Ö¤Ã÷:º¯Êýf(x)=xÓëg(x)=x+2x-2²»´æÔÚ¡°Sµã¡±;

(2)Èôº¯Êýf(x)=ax-1Óëg(x)=ln x´æÔÚ¡°Sµã¡±,ÇóʵÊýaµÄÖµ;

2

2

(3)ÒÑÖªº¯Êýf(x)=-x+a,g(x)=¡°Sµã¡±,²¢ËµÃ÷ÀíÓÉ.

2

.¶ÔÈÎÒâa>0,ÅжÏÊÇ·ñ´æÔÚb>0,ʹº¯Êýf(x)Óëg(x)ÔÚÇø¼ä(0,+¡Þ)ÄÚ´æÔÚ

62.(2018¡¤È«¹ú1¡¤ÀíT21)ÒÑÖªº¯Êýf(x)=-x+aln x. (1)ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ;

(2)Èôf(x)´æÔÚÁ½¸ö¼«Öµµãx1,x2,Ö¤Ã÷:

x

63.(2018¡¤È«¹ú1¡¤ÎÄT21)ÒÑÖªº¯Êýf(x)=ae-ln x-1. (1)Éèx=2ÊÇf(x)µÄ¼«Öµµã,Çóa,²¢Çóf(x)µÄµ¥µ÷Çø¼ä; (2)Ö¤Ã÷:µ±a¡Ý ʱ,f(x)¡Ý0.

64.(2018¡¤È«¹ú3¡¤ÀíT21)ÒÑÖªº¯Êýf(x)=(2+x+ax)ln(1+x)-2x. (1)Èôa=0,Ö¤Ã÷:µ±-10ʱ,f(x)>0; (2)Èôx=0ÊÇf(x)µÄ¼«´óÖµµã,Çóa.

2

65.(2018¡¤È«¹ú3,ÎÄ21,12·Ö,ÄѶÈ)ÒÑÖªº¯Êýf(x)=(1)ÇóÇúÏßy=f(x)ÔÚµã(0,-1)´¦µÄÇÐÏß·½³Ì; (2)Ö¤Ã÷:µ±a¡Ý1ʱ,f(x)+e¡Ý0. 66.(2018¡¤Õã½­¡¤T22)ÒÑÖªº¯Êýf(x)=

-ln x.

.

(1)Èôf(x)ÔÚx=x1,x2(x1¡Ùx2)´¦µ¼ÊýÏàµÈ,Ö¤Ã÷:f(x1)+f(x2)>8-8ln 2;

(2)Èôa¡Ü3-4ln 2,Ö¤Ã÷:¶ÔÓÚÈÎÒâk>0,Ö±Ïßy=kx+aÓëÇúÏßy=f(x)ÓÐΨһ¹«¹²µã.

67.(2018¡¤½­ËÕ¡¤T17)ijũ³¡ÓÐÒ»¿éÅ©Ìï,ÈçͼËùʾ,ËüµÄ±ß½çÓÉÔ²OµÄÒ»¶ÎÔ²»¡MPN(PΪ´ËÔ²»¡µÄÖеã)ºÍÏß¶ÎMN¹¹³É.ÒÑÖªÔ²OµÄ°ë¾¶Îª40Ã×,µãPµ½MNµÄ¾àÀëΪ50Ã×.Ïֹ滮ÔÚ´ËÅ©ÌïÉÏÐÞ½¨Á½¸öÎÂÊÒ´óÅï,´óÅï¢ñÄڵĵؿéÐÎ״Ϊ¾ØÐÎABCD,´óÅï¢òÄڵĵؿéÐÎ״Ϊ¡÷CDP,ÒªÇóA,B¾ùÔÚÏß¶ÎMNÉÏ,C,D¾ùÔÚÔ²»¡ÉÏ.ÉèOCÓëMNËù³ÉµÄ½ÇΪ¦È.

Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 8

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)