小学奥数基础教程(三年级)
- 45 -
提示:题图含有14个边长为1小棍的正方形;最大图形为长8小棍、宽7小棍的长方形。 6.56厘米。
解:每个小方格的面积=52÷13=4=2×2(厘米2
),所以每个小方格的边长为2厘米,题图周长为56厘米。 7.176厘米2
。
解:周长由24个小正方形的边长组成,小正方形边长为96÷24=4(厘米)。所以图形面积为 4×4×11=176(厘米2
)。 第28讲 一笔画(一)
如果一个图形可以用笔在纸上连续不断而且不重 复地一笔画成,那么这个图形就叫一笔画。显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?
当时的许多人都热衷于解决七桥问题,但是都没成功。后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:
(1)一笔画必须是连通的(图形的各部分之间连接在一起);
(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;
(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形不是一笔画。
利用一笔画原理,七桥问题很容易解决。因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。 顺便补充两点:
(1)一个图形的奇点数目一定是偶数。
因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点
数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。所以一个图形的奇点数目一定是偶数。
(2)有K个奇点的图形要K÷2笔才能画成。
例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即( 6 ÷2)笔画成。
一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。如左下图中的B,C两个奇点在右下图中都变成了偶点。所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。
小学奥数基础教程(三年级) - 46 -
到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画。 练习28
1.下列图形分别是几笔画?怎样画?
2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?
3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?
4.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。问:一个散步者能否一次不重复地走遍这七座桥?
答案与提示练习28
1.(1)(3)是一笔画,(2)是两笔画。 2.能,因为是一笔画。 3.见右图,走法不唯一。
4.能。例如下图的走法。
第29讲 一笔画(二)
利用一笔画原理,我们可以解决许多有趣的实际问题。
例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。如果能,应从哪开始走?
分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。
右图中只有A,D两个奇点,是一笔画,所以答案是
肯定的,应该从A或D展室开始走。
例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。 例2 一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?
分析与解:图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返
回邮局的一笔画。在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。走法参考右上图(走法不唯一)。 例3右图中每个小正方形的边长都是100米。小明沿线段从A点到B点,不许走重复路,他最多能走多少米?
分析与解:这道题大多数同学
都采用试画的方法,实际上可以用一笔画原理求解。
首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点。所以至少要去掉6条线段,也就是最多能走1800米,走法如下页上图。或
小学奥数基础教程(三年级) - 47 -
例2与例3的图中各有8个奇点,都是通过减少奇点个数,将多笔画变成一笔画的问题,但它们采用的方法却完全不同。因为例2中只要求走遍所有的线段,没有要求不能重复,所以通过添加线段的方法(实际是重复走添加线段的这段路),将奇点变为偶点,使多笔画变成一笔画。而在例3中,要求不能走重复的路,所以不能添加线段,只能通过减少线段的方法,将奇点变为偶点,使多笔画变成一笔画。区别就在于能否重复走!能“重复”就“添线”,不能“重复”就“减线”。
例4在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。已知它们的爬速相同,哪只蚂蚁能获胜?
分析与解:许多同学看不出这
是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题。这道题只要求爬过所有的棱,没要求不能重复。可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜。问题变为从B到D与从E到D哪个是一笔画问题。图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜。 练习29
1.邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?
2.有一个邮局,负责21个村庄的投递工作,右上图中的点表示村庄,线段表示道路。邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?
3.一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许
重复,则甲虫回到A点时,最多能爬行多少厘米?
答案与提示 练习29
1.50千米,走法见左下图。
2.见右上图。 3.最多爬行34厘米。
提示:8个点都是奇点,故至少要少爬4条棱。少
爬3厘米的棱和4厘米的棱各两条是最合理的(见右图)。
第30讲 包含与排除
同学们对这个题目可能很陌生,为了搞清楚什么是“包含与排除”,大家先一起回答两个问题: (1) 两个面积都是4厘米2
的正方形摆在桌面上(见左下图),它们遮盖住桌面的面积是8厘米2
吗?
(2)一个正方形每条边上有6个点(见右上图),四条边上一共有24个点吗?
聪明的同学马上就会发现:
(1)两个正方形的面积和是8厘米2
,现在它们有一部分重叠了。因此盖住桌面的面积应当从两个正方形的面积和中减去重叠的这部分面积,所以盖住桌面的面积
应少于8厘米2
。
(2)四个角上的点每个点都在两条边上,因此被重复计算了,在求四条边上共有多少点时,应当减去重复计算的点,所以共有 6×4-4= 20(个)点。
小学奥数基础教程(三年级)
- 48 -
这两个问题,在计算时,都采用了“去掉”重复的数值(面积或个数)的方法。
一般地,若已知A,B,C三部分的数量(见右图),其中C为A,B的重复部分,则图中的数量就等于 A+ B- C。
因为A,B有互相包含(重复)的部分C,所以,在求A和B合在一起的数量时,就要在A+B中减去A和B互相包含的部分C。这种方法称为包含排除法。
实际上,我们前面已经遇到过包含与排除的问题。如,第10讲“植树问题”的例3和例4,只不过那时我们没有明确提出“包含排除法”。
例1 把长38厘米和53厘米的两根铁条焊接成一根铁条。已知焊接部分长4厘米,焊接后这根铁条有多长? 解:因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长 38+ 53- 4= 87(厘米)。
例2某小学三年级四班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。这个班有多少人参加了语文或数学兴趣小组?
分析与解:如上页左下图所示,A圆表示参加语文兴趣小组的人,B圆表示参加数学兴趣小组的人,A与B重合的部分(阴影部分)表示同时参加两个小组的人。图中A圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有28-12=16(人);图中B圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有29-12=17(人)(见上页右下图)。 由此得到参加语文或数学兴趣小组的有 16+ 12+ 17= 45(人)。 根据包含排除法,直接可得 28+ 29- 12= 45(人)。
例3 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了。这个班既没参加美术小组也没参加音乐小组的有多少人? 分析与解:与例2对比,本例已知全班总人数,如果能仿照例2求出参加了美术或音乐小组的人数,那么只需用全班总人数减去这个人数,就得到所求的人数。
根据包含排除法知,该班至少参加了一个小组的总人数为12+ 23- 5= 30(人)。所以,该班未参加美术或音乐小组的人数是46-30=16(人)。综合列式为 46- ( 12+ 23- 5)= 16(人)。
例4 三年级科技活动组共有63人。在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人。每个同学都至少完成了一项活动。问:同时完成这两项活动的同学有多少人? 分析与解:因42+34=76,76>63,所以必有人同
时完成了这两项活动。由于每个同学都至少完成了一项活动,根据包含排除法知,
42+34-(完成了两项活动的人数)=全组人数,即
76-(完成了两项活动的人数)=63。
由减法运算法则知,完成两项活动的人数为 76-63=13(人)。
例5 在前100个自然数中,能被2或3整除的数有多少个?
分析与解:如右图所示,A圆内是前100个自然数中所有能被2整除的数,B圆内是前100个自然数中所有能被3整除的数,C为前100个自然数中既能被2整除也能被3整除的数。
前100个自然数中能被2整除的数有100÷2=50 (个)。由 100÷3= 33?? 1知,前 100个自然数中能被 3整除的数有 33个。由 100÷(2×3)= 16??
4知,前 100个自然数中既能被2整除也能被3整除的数有16个。
所以A中有50个数,B中有33个数,C中有16个数。因为A,B都包含C,根据包含排除法得到,能被2或3整除的数有
50+ 33- 16= 67(个)。 练习30
1.三年级四班组织了一次象棋和军棋的棋类比赛,参加象棋比赛的有35人,参加军棋比赛的有24人,有16人两项比赛都参加了。这个班参加棋类比赛的共有多少人?
2.某校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人。这个表演队共有多少人能登台表演歌舞?
3.一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了。一班有多少人两项比赛都没有参加?