T£¨X£©£ºXÊÇÒ»ÏîÈÎÎñ¡£N£¨X£©£ºXÐèÒªÖÇÄÜ¡£P£¨X£©£ºXÓÉÈËÖ´ÐС£ (?x){(?y)(C(x)?E(x,y)?T(y)?N(y)?P(y))?I(x)} 3. ¿´µçÓ°¾ç±¾: (1.) ¿ª³¡Ìõ¼þ:
( a ) ÎÒÏë¿´µçÓ°
£¨b£©ÎÒÓÐ×ã¹»µÄÇ®ÂòµçӰƱ £¨2.£©½ÇÉ«£º
ÎÒ£¬ÊÛÆ±Ô±£¬·Åӳʦ£¬ÃÅÎÀ £¨3.£©µÀ¾ß£º
µçӰƱ£¬ÒÎ×Ó£¬·ÅÓ³É豸£¨ÆÁÄ»£¬µçÓ°»ú£©£¬Ç® £¨4.£©³¡¾°£º
³¡¾°Ò»£ºÂòƱ
(a) ÎÒ×ßµ½ÊÛÆ±´¦£¬ÌͳöÇ®¸øÊÛÆ±Ô±¡£ (b)ÊÛÆ±Ô±½Ó¹ýÇ®£¬²¢¸øÁËÎÒµçӰƱ¡£ ³¡¾°¶þ£º½øµçÓ°Ôº
(a)ÎÒÄÃ×ÅÆ±£¬×ß½øÈë¿Ú´¦£¬ÌͳöƱ¸øÃÅÎÀ¿´¡£ (b)ÃÅÎÀÈÃÎÒ½øÈ¥¡£ ³¡¾°Èý£ºµÈ´ýµçÓ°¿ªÊ¼
ÎÒÕÒµ½ÎÒµÄ×ùλ£¬×øÏ¡£ ³¡¾°ËÄ£º¿´µçÓ° (a) µçÓ°¿ªÑÝÁË
(b) ÎÒ±»¾çÇéÉîÉîÎüÒý£¬È«Éñ¹á×¢¿´µçÓ° ³¡¾°Î壺 É¢³¡ (a)µçÓ°½áÊøÁË
(b)ÎÒËæÈËÁ÷À뿪µçÓ°Ôº¡£ £¨5.£©½á¹û
£¨a.£©ÎÒ¿´ÍêµçÓ°£¬ÐÄÇéºÜºÃ £¨b£©ÎÒ»¨ÁËÇ®
£¨c.£©µçÓ°ÔºÕõÁËÇ®¡£ 4.f(s0)=d(n)+w(n)=0+3=3
²¿·ÖÓÐÐòËÑË÷Ê÷ÈçÏ£º
1 8 7 2 6 3 4 5 f=3 f=4 1 3 1 2 8 2 4 8 6 7 6 5 7 1 2 3 f=5 8 6 4 7 5 ËÄ£®ÂÛÊöÌâ
ÂÔ¡£
3 f=3 f=5 4 5 1 2 3 8 6 4 7 5 1 2 3 1 2 3 8 4 f=4 8 4 7 6 5 7 6 5 f=5 =5