人教版七年级下册数学导学案 设计: 审核: 班级: 姓名:
第1课时:5.1.1 相交线 导学案
【学习目标】1、了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
2、理解对顶角相等,并能运用它解决一些问题.
【学习重点】邻补角、对顶角的概念,对顶角性质与应用. 【学习难点】理解对顶角相等的性质. 【学习过程】
一、温故知新(5分钟)
各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,并编写两道与它们相关的题目,在小组交流,并推出小组最好的两道题在班级汇报.
二、自主探索(15分钟)
探索一:完成课本P2页的探究,填在课本上.
你能归纳出“邻补角”的定义吗? . “对顶角”的定义呢? .
自学检测一:
1.如图1所示,直线AB和CD相交于点O,OE是一条射线. (1)写出∠AOC的邻补角:____ _ ___ __; (2)写出∠COE的邻补角: __;
图1 (3)写出∠BOC的邻补角:____ _ ___ __;
(4)写出∠BOD的对顶角:____ _.
2.如图所示,∠1与∠2是对顶角的是( )
探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.
请归纳“对顶角的性质”: . 自学检测二:
1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______
2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______
3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.
E EBaD2
31CBAD OO4Cb第1题 FFA第2题
第3题
1
人教版七年级下册数学导学案 设计: 审核: 班级: 姓名:
三、当堂反馈(25分钟) 预备题:
如图,已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数 解:∠3=∠1=40°( )。
∠2=180°-∠1=180°-40°=140°( )。 ∠4=∠2=140°( )。
1、如图,已知∠1=30° ,求∠2、∠3∠4的度数。
2.若两个角互为邻补角,则它们的角平分线所夹的角为 度. 3.如图所示,直线a,b,c两两相交,∠1=60°,∠2=
2∠4,?求∠3、∠5的度数. 3
4.如图所示,有一个破损的扇形零件,?利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?
5.探索规律:(画图探究)
(1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角; (3)四条直线交于一点,有 对对顶角; (4)n条直线交于一点,有 对对顶角.
2
人教版七年级下册数学导学案 设计: 审核: 班级: 姓名:
第2课时 5.1.2 垂线 导学案
【学习目标】1了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;
2会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.
【学习重点】垂线的意义、性质和画法,垂线段性质及其简单应用. 【学习难点】垂线的画法以及对点到直线的距离的概念的理解. 【学习过程】
一、温故知新(5分钟)
在学习对顶角知识的时候,我们认识了“两线四角”,及两条直线相交于一点,得到
四个角,这四个角里面,有两对对顶角,它们分别对应相等,如图,可以说成“直线AB与CD相交于点O”. 我们如果把直线CD绕点O旋转,无论是按照顺时针方向转,还是按照逆时针方向转,∠BOD的大小都将发生变化.
当两条直线相交所成的四个角中有一个为直角时,叫做这两条直线互相垂直,其中的一条直线叫垂线,它们的交点叫垂足.如图
用几何语言表示:
方式⑴∵ ∠AOC=90° ∴ AB_____CD,垂足是_____ 方式⑵∵ AB⊥CD于O ∴ ∠AOC=______
二、自主探索(25分钟)
探索一:请你认真画一画,看看有什么收获.
⑴如图1,利用三角尺或量角器画已知直线l的垂线,这样的垂线能画__________条; ⑵如图2,经过直线l上一点A画l的垂线,这样的垂线能画_____条; ⑶如图3,经过直线l外一点B画l的垂线,这样的垂线能画_____条;
B B l A l l l(图1) (图2) (图3a) (图3b)
经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直.自学检测一:
1.如图所示,OA⊥OB,OC是一条射线,若∠AOC=120°,
3
ADOCBA C O D B 人教版七年级下册数学导学案 设计: 审核: 班级: 姓名:
求∠BOC度数
2.如图所示,直线AB⊥CD于点O,直线EF经过点O, 若∠1=26°,求∠2的度数.
3.如图所示,直线AB,CD相交于点O,P是CD上一点. (1)过点P画AB的垂线PE,垂足为E.
(2)过点P画CD的垂线,与AB相交于F点. (3)比较线段PE,PF,PO三者的大小关系
探索二:仔细观察测量比较上题中点P分别到直线AB上三点E、F、O的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 自学检测二:
1.在下列语句中,正确的是( ).
A.在同一平面内,一条直线只有一条垂线
B.在同一平面内,过直线上一点的直线只有一条
C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条 D.在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC⊥BC,CD⊥AB于D,AC=5cm,BC=12cm,AB=13cm,则点B到AC的距离是________,点A到BC的距离是_______,点C到AB?的距离是_______,?AC>CD?的依据是_________. 三、当堂反馈(15分钟)
1.如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是( ) A.∠EOD比∠FOB大 B.∠EOD比∠FOB小
C.∠EOD与∠FOB相等 D.∠EOD与∠FOB大小关系不确定
2.如图,一辆汽车在直线形的公路AB上由A向B行驶,C,D是分别位于公路AB两侧的加油站.设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中的公路上分别画出点M,N的位置并说明理由.
3.如图,AOB为直线,∠AOD:∠DOB=3:1,OD平分∠COB. (1)求∠AOC的度数;(2)判断AB与OC的位置关系.
4