A.等腰三角形; B.直角三角形;
C.等腰三角形或直角三角形; D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状。 3.已知:如图,四边形ABCD,AB=1,BC=求:四边形ABCD的面积。
BCDA313,CD=,AD=3,且AB⊥BC。 444.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
6.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。 7.如图,在正方形ABCD中,F为DC的中点,E为BC上一点且EC==90.
。
1BC,求证:∠EFA4
五.小结与反思
勾股定理复习(1)
学习目标
1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.
2.勾股定理的应用.
3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用. 一.复习回顾
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:
1.勾股定理:
(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.
(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.
a2?c2?b2,b2?c2?a2,c?a2?b2,a?c2?b2,b?c2?a2.
勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理.
2.勾股定理逆定理
“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a+b=c),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.
2
2
2
3.勾股定理的作用:
(1)已知直角三角形的两边,求第三边; (2)在数轴上作出表示n(n为正整数)的点.
勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.
(3)三角形的三边分别为a、b、c,其中c为最大边,若a?b?c,则三角形是直角三角形;若
222a2?b2?c2,则三角形是锐角三角形;若a2?b2?c?,则三角形是钝角三角形.所以使用勾股定理
的逆定理时首先要确定三角形的最大边. 二.课堂展示
例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少? 例2:如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.
三.随堂练习
1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25 B.3
11111,4,5 C.3,4,5 D.4,7,8 222222.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )
A.1倍 B.2倍 C.3倍 D.4倍 3.三个正方形的面积如图1,正方形A的面积为( ) A. 6 B. 36 C. 64 D. 8
100 图1
64 A
4.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为( )
A.6cm B.8.5cm C.
3060cm D.cm
13132
2
5.在△ABC中,三条边的长分别为a,b,c,a=n-1,b=2n,c=n+1(n>1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角
四.课堂检测
1.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距( )
A.50cm B.100cm C.140cm D.80cm
2.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为 ( )
A.8cm B.10cm C.12cm D.14cm 3.在△ABC中,∠C=90°,若 a=5,b=12,则 c=___
4.等腰△ABC的面积为12cm,底上的高AD=3cm,则它的周长为___. 5.等边△ABC的高为3cm,以AB为边的正方形面积为___.
6.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___
7.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.
8.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?
五.小结与反思
8m 图3
2