È˹¤ÖÇÄܾ­µäÊÔÌâ¼°´ð°¸

µÚ2ÕÂ

2.8 ÉèÓÐÈçÏÂÓï¾ä£¬ÇëÓÃÏàÓ¦µÄν´Ê¹«Ê½·Ö±ð°ÑËûÃDZíʾ³öÀ´£ºs (1) ÓеÄÈËϲ»¶Ã·»¨£¬ÓеÄÈËϲ»¶¾Õ»¨£¬ÓеÄÈ˼Èϲ»¶Ã·»¨ÓÖϲ»¶¾Õ»¨ ¡£ ½â£º¶¨Òåν´Êd P(x)£ºxÊÇÈË L(x,y)£ºxϲ»¶y

ÆäÖУ¬yµÄ¸öÌåÓòÊÇ{÷»¨£¬¾Õ»¨}¡£

½«ÖªÊ¶ÓÃν´Ê±íʾΪ£º

(?x )(P(x)¡úL(x, ÷»¨)¡ÅL(x, ¾Õ»¨)¡ÅL(x, ÷»¨)¡ÄL(x, ¾Õ»¨)) (2) ÓÐÈËÿÌìÏÂÎ綼ȥ´òÀºÇò¡£ ½â£º¶¨Òåν´Ê P(x)£ºxÊÇÈË B(x)£ºx´òÀºÇò A(y)£ºyÊÇÏÂÎç ½«ÖªÊ¶ÓÃν´Ê±íʾΪ£ºa

(?x )(?y) (A(y)¡úB(x)¡ÄP(x)) (3) ÐÂÐͼÆËã»úËÙ¶ÈÓֿ죬´æ´¢ÈÝÁ¿ÓÖ´ó¡£ ½â£º¶¨Òåν´Ê

NC(x)£ºxÊÇÐÂÐͼÆËã»ú F(x)£ºxËÙ¶È¿ì B(x)£ºxÈÝÁ¿´ó ½«ÖªÊ¶ÓÃν´Ê±íʾΪ£º (?x) (NC(x)¡úF(x)¡ÄB(x))

(4) ²»ÊÇÿ¸ö¼ÆËã»úϵµÄѧÉú¶¼Ï²»¶ÔÚ¼ÆËã»úÉϱà³ÌÐò¡£ ½â£º¶¨Òåν´Ê

S(x)£ºxÊǼÆËã»úϵѧÉú

L(x, pragramming)£ºxϲ»¶±à³ÌÐò U(x,computer)£ºxʹÓüÆËã»ú ½«ÖªÊ¶ÓÃν´Ê±íʾΪ£º

? (?x) (S(x)¡úL(x, pragramming)¡ÄU(x,computer)) (5) ·²ÊÇϲ»¶±à³ÌÐòµÄÈ˶¼Ï²»¶¼ÆËã»ú¡£ ½â£º¶¨Òåν´Ê P(x)£ºxÊÇÈË L(x, y)£ºxϲ»¶y ½«ÖªÊ¶ÓÃν´Ê±íʾΪ£º

(?x) (P(x)¡ÄL(x,pragramming)¡úL(x, computer))

1

֪ʶ±íʾ·½·¨²¿·Ö²Î¿¼´ð°¸

2.9 ÓÃν´Ê±íʾ·¨Çó½â»úÆ÷ÈËÞû»ýľÎÊÌâ¡£Éè»úÆ÷ÈËÓÐÒ»Ö»»úеÊÖ£¬Òª´¦ÀíµÄÊÀ½çÓÐÒ»ÕÅ×À×Ó£¬×ÀÉϿɶѷÅÈô¸ÉÏàͬµÄ·½»ýľ¿é¡£»úеÊÖÓÐ4¸ö²Ù×÷»ýľµÄµäÐͶ¯×÷£º´Ó×ÀÉϼðÆðÒ»¿é»ýľ£»½«ÊÖÖеĻýľ·Åµ½×ÀÖ®ÉÏ£»ÔÚ»ýľÉÏÔÙÞûÉÏÒ»¿é»ýľ£»´Ó»ýľÉÏÃæ¼ðÆðÒ»¿é»ýľ¡£»ýľÊÀ½çµÄ²¼¾ÖÈçÏÂͼËùʾ¡£

½â£º(1) Ïȶ¨ÒåÃèÊö״̬µÄν´Ê CLEAR(x)£º»ýľxÉÏÃæÊǿյġ£ ON(x, y)£º»ýľxÔÚ»ýľyµÄÉÏÃæ¡£ ONTABLE(x)£º»ýľxÔÚ×À×ÓÉÏ¡£ HOLDING(x)£º»úеÊÖץסx¡£

HANDEMPTY£º»úеÊÖÊǿյġ£

ÆäÖУ¬xºÍyµÄ¸öÌåÓò¶¼ÊÇ{A, B, C}¡£

ÎÊÌâµÄ³õʼ״̬ÊÇ£º

ONTABLE(A) ONTABLE(B) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY

ÎÊÌâµÄÄ¿±ê״̬ÊÇ£º ONTABLE(C) ON(B, C) ON(A, B)

CLEAR(A) HANDEMPTY

(2) ÔÙ¶¨ÒåÃèÊö²Ù×÷µÄν´Ê

ÔÚ±¾ÎÊÌâÖУ¬»úеÊֵIJÙ×÷ÐèÒª¶¨ÒåÒÔÏÂ4¸öν´Ê£º Pickup(x)£º´Ó×ÀÃæÉϼðÆðÒ»¿é»ýľx¡£ Putdown(x)£º½«ÊÖÖеĻýľ·Åµ½×ÀÃæÉÏ¡£ Stack(x, y)£ºÔÚ»ýľxÉÏÃæÔÙÞûÉÏÒ»¿é»ýľy¡£ Upstack(x, y)£º´Ó»ýľxÉÏÃæ¼ðÆðÒ»¿é»ýľy¡£

ÆäÖУ¬Ã¿Ò»¸ö²Ù×÷¶¼¿É·ÖΪÌõ¼þºÍ¶¯×÷Á½²¿·Ö£¬¾ßÌåÃèÊöÈçÏ£º

Pickup(x)

Ìõ¼þ£ºONTABLE(x)£¬HANDEMPTY£¬CLEAR(x)

2

ͼ »úÆ÷ÈËÞû»ýľÎÊÌâ

CA B A B C ¶¯×÷£ºÉ¾³ý±í£ºONTABLE(x)£¬HANDEMPTY Ìí¼Ó±í£ºHANDEMPTY(x) Putdown(x)

Ìõ¼þ£ºHANDEMPTY(x) ¶¯×÷£ºÉ¾³ý±í£ºHANDEMPTY(x)

Ìí¼Ó±í£ºONTABLE(x)£¬CLEAR(x) £¬HANDEMPTY Stack(x, y)

Ìõ¼þ£ºHANDEMPTY(x)£¬CLEAR(y) ¶¯×÷£ºÉ¾³ý±í£ºHANDEMPTY(x)£¬CLEAR(y) Ìí¼Ó±í£ºHANDEMPTY£¬ON(x, y) £¬CLEAR(x) Upstack(x, y)

Ìõ¼þ£ºHANDEMPTY£¬CLEAR(y) £¬ON(y,x) ¶¯×÷£ºÉ¾³ý±í£ºHANDEMPTY£¬ON(y, x) Ìí¼Ó±í£ºHOLDING(y)£¬CLEAR(x) (3) ÎÊÌâÇó½â¹ý³Ì

ÀûÓÃÉÏÊöν´ÊºÍ²Ù×÷£¬ÆäÇó½â¹ý³ÌΪ£º ONTABLE(A) ONTABLE(B) Upstack(A,C) ON(C, A) CLEAR(B) CLEAR(C) HANDEMPTY ONTABLE(A) ONTABLE(B) Putdown(C) HOLDING(C) CLEAR(A) CLEAR(B) CLEAR(C) ONTABLE(A) ONTABLE(B) ONTABLE(C) Pickup(B) CLEAR(A) CLEAR(B) CLEAR(C) HANDEMPTY ONTABLE(C) ON(B,C) ON(A,B) CLEAR(A) HANDEMPT ONTABLE(A) ONTABLE(A) ONTABLE(C) ONTABLE(C) Stack(C,B) Pickup(A) ON(B,C) HOLDING(B) CLEAR(A) CLEAR(A) CLEAR(B) CLEAR(B) CLEAR(C) HANDEMPTY

ONTABLE(C) ON(B,C) Stack(B,A) CLEAR(A) CLEAR(B) HOLDING(A) 2.10 ÓÃν´Ê±íʾ·¨Çó½âÅ©·ò¡¢ÀÇ¡¢É½Ñò¡¢°×²ËÎÊÌ⡣ũ·ò¡¢ÀÇ¡¢É½Ñò¡¢°×²ËÈ«²¿·ÅÔÚÒ»ÌõºÓµÄ×ó°¶£¬ÏÖÔÚÒª°ÑËûÃÇÈ«²¿Ë͵½ºÓµÄÓÒ°¶È¥£¬Å©·òÓÐÒ»Ìõ´¬£¬¹ýºÓʱ£¬³ýÅ©·òÍâ´¬ÉÏÖÁ¶àÄÜÔØÀÇ¡¢É½Ñò¡¢°×²ËÖеÄÒ»ÖÖ¡£ÀÇÒª³ÔɽÑò£¬É½ÑòÒª³Ô°×²Ë£¬³ý·ÇÅ©·òÔÚÄÇÀï¡£ËÆ¹æ»®³öÒ»¸öÈ·±£È«²¿°²È«¹ýºÓµÄ¼Æ»®¡£Çëд³öËùÓÃν´ÊµÄ¶¨Ò壬²¢¸ø³öÿ¸öν´ÊµÄ¹¦Äܼ°±äÁ¿µÄ¸öÌåÓò¡£

½â£º(1) Ïȶ¨ÒåÃèÊö״̬µÄν´Ê

ÒªÃèÊöÕâ¸öÎÊÌ⣬ÐèÒªÄܹ»ËµÃ÷Å©·ò¡¢ÀÇ¡¢Ñò¡¢°×²ËºÍ´¬ÔÚʲôλÖã¬Îª¼ò»¯ÎÊÌâ±íʾ£¬È¡Ïû´¬ÔÚºÓÖÐÐÐÊ»µÄ״̬£¬Ö»ÃèÊö×󰶺ÍÓÒ°¶µÄ״̬¡£²¢ÇÒ£¬ÓÉÓÚ×󰶺ÍÓÒ°¶µÄ״̬»¥²¹£¬Òò´Ë¿É½ö¶Ô×ó°¶»òÓÒ°¶µÄ״̬×öÖ±½ÓÃèÊö¡£±¾ÌâÑ¡Ôñ¶Ô×ó°¶½øÐÐÖ±½ÓÃèÊöµÄ·½·¨£¬¼´¶¨Òåν´ÊÈçÏ£º

3

AL(x)£ºxÔÚ×ó°¶

ÆäÖУ¬xµÄ¸öÌåÓòÊÇ{Å©·ò£¬´¬£¬ÀÇ£¬Ñò£¬°×²Ë}¡£¶ÔÓ¦µØ£¬?AL(x)±íʾxÔÚÓÒ°¶¡£ ÎÊÌâµÄ³õʼ״̬£º

AL(Å©·ò) AL(´¬) AL(ÀÇ) AL(Ñò) AL(°×²Ë) ÎÊÌâµÄÄ¿±ê״̬£º

?AL(Å©·ò) ?AL(´¬) ?AL(ÀÇ) ?AL(Ñò) ?AL(°×²Ë)

(2) ÔÙ¶¨ÒåÃèÊö²Ù×÷µÄν´Ê ±¾ÌâÐèÒªÒÔÏÂ4¸öÃèÊö²Ù×÷µÄν´Ê£º L-R£ºÅ©·ò×Ô¼º»®´¬´Ó×ó°¶µ½ÓÒ°¶ L-R(x)£ºÅ©·ò´ø×Åx»®´¬´Ó×ó°¶µ½ÓÒ°¶ R-L£ºÅ©·ò×Ô¼º»®´¬´ÓÓÒ°¶µ½×ó°¶ R-L(x) £ºÅ©·ò´ø×Åx»®´¬´ÓÓÒ°¶µ½×ó°¶ ÆäÖУ¬xµÄ¸öÌåÓòÊÇ{ÀÇ£¬Ñò£¬°×²Ë}¡£

¶ÔÉÏÊöÿ¸ö²Ù×÷£¬¶¼°üÀ¨Ìõ¼þºÍ¶¯×÷Á½²¿·Ö¡£ËüÃǶÔÓ¦µÄÌõ¼þºÍ¶¯×÷ÈçÏ£º L-R£ºÅ©·ò»®´¬´Ó×ó°¶µ½ÓÒ°¶

Ìõ¼þ£ºAL(´¬)£¬AL(Å©·ò)£¬?AL(ÀÇ)¡Å?AL(Ñò)£¬?AL(Ñò)¡Å?AL(°×²Ë) ¶¯×÷£ºÉ¾³ý±í£ºAL(´¬)£¬AL(Å©·ò) Ìí¼Ó±í£º?AL(´¬)£¬?AL(Å©·ò) L-R(ÀÇ)£ºÅ©·ò´ø×ÅÀÇ»®´¬´Ó×ó°¶µ½ÓÒ°¶ Ìõ¼þ£ºAL(´¬)£¬AL(Å©·ò)£¬AL(ÀÇ)£¬?AL(Ñò) ¶¯×÷£ºÉ¾³ý±í£ºAL(´¬)£¬AL(Å©·ò)£¬AL(ÀÇ) Ìí¼Ó±í£º?AL(´¬)£¬?AL(Å©·ò)£¬?AL(ÀÇ) L-R(Ñò)£ºÅ©·ò´ø×ÅÑò»®´¬´Ó×ó°¶µ½ÓÒ°¶

Ìõ¼þ£ºAL(´¬)£¬AL(Å©·ò)£¬AL(Ñò)£¬ AL(ÀÇ)£¬AL(°×²Ë) »ò£ºAL(´¬)£¬AL(Å©·ò)£¬AL(Ñò)£¬?AL(ÀÇ)£¬?AL(°×²Ë) ¶¯×÷£ºÉ¾³ý±í£ºAL(´¬)£¬AL(Å©·ò)£¬AL(Ñò) Ìí¼Ó±í£º?AL(´¬)£¬?AL(Å©·ò)£¬?AL(Ñò) L-R(°×²Ë)£ºÅ©·ò´ø×Űײ˻®´¬´Ó×ó°¶µ½ÓÒ°¶

Ìõ¼þ£ºAL(´¬)£¬AL(Å©·ò)£¬AL(°×²Ë)£¬?AL(ÀÇ) ¶¯×÷£ºÉ¾³ý±í£ºAL(´¬)£¬AL(Å©·ò)£¬AL(°×²Ë) Ìí¼Ó±í£º?AL(´¬)£¬?AL(Å©·ò)£¬?AL(°×²Ë) R-L£ºÅ©·ò»®´¬´ÓÓÒ°¶µ½×ó°¶

4

Ìõ¼þ£º?AL(´¬)£¬?AL(Å©·ò)£¬AL(ÀÇ)¡ÅAL(Ñò)£¬AL(Ñò)¡ÅAL(°×²Ë) »ò£º?AL(´¬)£¬?AL(Å©·ò) £¬?AL(ÀÇ)£¬?AL(°×²Ë)£¬AL(Ñò) ¶¯×÷£ºÉ¾³ý±í£º?AL(´¬)£¬?AL(Å©·ò) Ìí¼Ó±í£ºAL(´¬)£¬AL(Å©·ò) R-L(Ñò) £ºÅ©·ò´ø×ÅÑò»®´¬´ÓÓÒ°¶µ½×ó°¶

Ìõ¼þ£º?AL(´¬)£¬?AL(Å©·ò)£¬?AL(Ñò) £¬?AL(ÀÇ)£¬?AL(Ñò)£¬AL(°×²Ë) ¶¯×÷£ºÉ¾³ý±í£º?AL(´¬)£¬?AL(Å©·ò)£¬?AL(Ñò) Ìí¼Ó±í£ºAL(´¬)£¬AL(Å©·ò)£¬AL(Ñò) (3) ÎÊÌâÇó½â¹ý³Ì AL(Å©·ò) AL(´¬) AL(ÀÇ) AL(Ñò) AL(°×²Ë) L-R(Ñò) AL(ÀÇ) AL(°×²Ë) ?AL(Å©·ò) ?AL(´¬) ?AL(Ñò) AL(Ñò) ?AL(Å©·ò) ?AL(´¬) ?AL(°×²Ë) ?AL(ÀÇ) R-L AL(Å©·ò) AL(´¬) L-R(ÀÇ) AL(ÀÇ) AL(°×²Ë) ?AL(Ñò) AL(Å©·ò) L-R(Ñò) AL(´¬) AL(Ñò) ?AL(°×²Ë) ?AL(ÀÇ) AL(°×²Ë) ?AL(Å©·ò) R-L(Ñò) ?AL(´¬) ?AL(ÀÇ) ?AL(Ñò) ?AL(Å©·ò) ?AL(´¬) ?AL(Ñò) ?AL(°×²Ë) ?AL(ÀÇ) AL( Å©·ò) AL( ´¬) L-R(°×²Ë) AL( Ñò) AL( °×²Ë) ? AL(ÀÇ) R-L 2.11 ÓÃν´Ê±íʾ·¨Çó½âÐÞµÀÊ¿ºÍÒ°ÈËÎÊÌâ¡£Ôںӵı±°¶ÓÐÈý¸öÐÞµÀÊ¿¡¢Èý¸öÒ°È˺ÍÒ»Ìõ´¬£¬ÐÞµÀÊ¿ÃÇÏëÓÃÕâÌõ´¬½«ËùÓеÄÈ˶¼Ô˹ýºÓÈ¥£¬µ«ÒªÊܵ½ÒÔÏÂÌõ¼þÏÞÖÆ£º

(1) ÐÞµÀÊ¿ºÍÒ°È˶¼»á»®´¬£¬µ«´¬Ò»´ÎÖ»ÄÜ×°ÔËÁ½¸öÈË¡£

(2) ÔÚÈκΰ¶±ß£¬Ò°ÈËÊý²»Äܳ¬¹ýÐÞµÀÊ¿£¬·ñÔòÐÞµÀÊ¿»á±»Ò°È˳Եô¡£

¼Ù¶¨Ò°ÈËÔ¸Òâ·þ´ÓÈκÎÒ»ÖÖ¹ýºÓ°²ÅÅ£¬Çë¹æ»®³öÒ»ÖÖÈ·±£ÐÞµÀÊ¿°²È«µÄ¹ýºÓ·½°¸¡£ÒªÇóд³öËùÓÃν´ÊµÄ¶¨Òå¡¢¹¦Äܼ°±äÁ¿µÄ¸öÌåÓò¡£

½â£º£¨1£©¶¨Òåν´Ê

Ïȶ¨ÒåÐÞµÀÊ¿ºÍÒ°ÈËÈËÊý¹ØÏµµÄν´Ê£º G(x,y,S)£º ÔÚ״̬SÏÂx´óÓÚy GE(x,y,S)£ºÔÚ״̬SÏÂx´óÓÚ»òµÈÓÚy

ÆäÖУ¬x,y·Ö±ð´ú±íÐÞµÀÊ¿ÈËÊýºÍÒ°ÈËÊý£¬ËûÃǵĸöÌåÓò¾ùΪ{0,1,2,3}¡£

ÔÙ¶¨Òå´¬ËùÔÚ°¶µÄν´ÊºÍÐÞµÀÊ¿²»Ôڸð¶ÉϵÄν´Ê£º Boat(z,S)£º×´Ì¬SÏ´¬ÔÚz°¶

EZ(x,S)£º ״̬SÏÂxµÈÓÚ0£¬¼´ÐÞµÀÊ¿²»Ôڸð¶ÉÏ ÆäÖУ¬zµÄ¸öÌåÓòÊÇ{L,R}£¬L±íʾ×ó°¶£¬R±íʾÓÒ°¶¡£ ÔÙ¶¨Ò尲ȫÐÔν´Ê£º

Safety(z,x,y,S)¡Ô(G(x,0,S)¡ÄGE(x,y,S))¡Å(EZ(x,S))

ÆäÖУ¬z,x,yµÄº¬ÒåͬÉÏ¡£¸Ãν´ÊµÄº¬ÒåÊÇ£º×´Ì¬SÏ£¬ÔÚz°¶£¬±£Ö¤ÐÞµÀÊ¿°²È«£¬µ±ÇÒ½öµ±ÐÞµÀÊ¿²»Ôڸð¶ÉÏ£¬»òÕßÐÞµÀÊ¿Ôڸð¶ÉÏ£¬µ«ÈËÊý³¬¹ýÒ°ÈËÊý¡£¸Ãν´ÊͬʱҲÃèÊöÁËÏàÓ¦µÄ״̬¡£

5

ÔÙ¶¨ÒåÃèÊö¹ýºÓ·½°¸µÄν´Ê£º

L-R(x, x1, y, y1,S)£ºx1¸öÐÞµÀÊ¿ºÍy1¸öÒ°È˶ɴ¬´ÓºÓµÄ×ó°¶µ½ºÓµÄÓÒ°¶

Ìõ¼þ£ºSafety(L,x-x1,y-y1,S¡¯)¡ÄSafety(R,3-x+x1,3-y+y1,S¡¯)¡ÄBoat(L,S) ¶¯×÷£ºSafety(L,x-x1,y-y1,S¡¯)¡ÄSafety(R,3-x+x1,3-y+y1,S¡¯)¡ÄBoat(R,S¡¯) R-L (x, x1, y, y1,S)£ºx2¸öÐÞµÀÊ¿ºÍy2¸öÒ°È˶ɴ¬´ÓºÓµÄ×ó°¶µ½ºÓµÄÓÒ°¶

Ìõ¼þ£ºSafety(R,3-x-x2,3-y-y2,S¡¯)¡ÄSafety(L,x+x2,y+y2,S¡¯)¡ÄBoat(R,S) ¶¯×÷£ºSafety(R,3-x-x2,3-y-y2,S¡¯)¡ÄSafety(L,x+x2,y+y2,S¡¯)¡ÄBoat(L,S¡¯)

(2) ¹ýºÓ·½°¸

Safety(L,3,3,S0)¡ÄSafety(R,0,0,S0)¡ÄBoat(L,S0)

L-R(3, 1, 3, 1,S0) L-R(3, 0, 3, 2,S0) Safety(L,2,2,S1)¡ÄSafety(R,1,1,S1)¡ÄBoat(R,S1)

Safety(L,3,1,S1¡¯)¡ÄSafety(R,0,2,S1¡¯)¡ÄBoat(R,S1¡¯)

R-L (2, 1, 2, 0,S1) R-L (3,0, 1, 1,S1¡¯)

Safety(L,3,2,S2)¡ÄSafety(R,0,1,S2)¡ÄBoat(L,S2) L-R(3, 0, 2, 2,S2) Safety(L,3,0,S3)¡ÄSafety(R,0,3,S3)¡ÄBoat(R,S3)

R-L (3, 0, 0, 1,S3) Safety(L,3,1,S4)¡ÄSafety(R,0,2,S1)¡ÄBoat(L,S4)

L-R(3, 2, 1, 0,S4)

Safety(L,1,1,S5)¡ÄSafety(R,2,2,S5)¡ÄBoat(R,S5)

R-L (1, 1, 1, 1,S5) Safety(L,2,2,S6)¡ÄSafety(R,1,1,S6)¡ÄBoat(L,S6)

L-R(2, 2, 2, 0,S6) Safety(L,0,2,S7)¡ÄSafety(R,3,1,S7)¡ÄBoat(R,S7)

R-L (0, 0, 2, 1,S7) Safety(L,0,3,S8)¡ÄSafety(R,3,0,S8)¡ÄBoat(L,S8)

L-R(0, 0, 3, 2,S8) Safety(L,0,1,S9)¡ÄSafety(R,3,2,S9)¡ÄBoat(R,S9)

R-L (0, 1, 1, 0,S9)

Safety(L,1,1,S10)¡ÄSafety(R,2,2,S10)¡ÄBoat(L,S10)

L-R(1, 1, 1, 1,S10) Safety(L,0,0,S11)¡ÄSafety(R,3,3,S11)¡ÄBoat(R,S11)

2.18 Çë¶ÔÏÂÁÐÃüÌâ·Ö±ðд³öËüÃǵÄÓïÒåÍøÂ磺 (1) ÿ¸öѧÉú¶¼ÓÐһ̨¼ÆËã»ú¡£ ½â£º

GS 6

ѧÉú F g ISA Owner s Õ¼ÓÐȨ AKO Owns o ¼ÆËã»ú ISA c

? (2) ¸ßÀÏʦ´Ó3Ôµ½7Ô¸ø¼ÆËã»úϵѧÉú½²¡¶¼ÆËã»úÍøÂç¡·¿Î¡£ ½â£º

(3) ѧϰ°àµÄѧԱÓÐÄС¢ÓÐÅ®¡¢ÓÐÑо¿Éú¡¢Óб¾¿ÆÉú¡£ ½â£º²ÎÀý2.14

(4) ´´Ð¹«Ë¾Ôڿƺ£´ó½Ö56ºÅ£¬ÁõÑóÊǸù«Ë¾µÄ¾­Àí£¬Ëû32Ëꡢ˶ʿѧλ¡£ ½â£º²ÎÀý2.10

(5) ºì¶ÓÓëÀ¶¶Ó½øÐÐ×ãÇò±ÈÈü£¬×îºóÒÔ3£º2µÄ±È·Ö½áÊø¡£ ½â£º

2.19 Çë°ÑÏÂÁÐÃüÌâÓÃÒ»¸öÓïÒåÍøÂç±íʾ³öÀ´£º (1) Ê÷ºÍ²Ý¶¼ÊÇÖ²Î ½â£º

7Ô Start ISA ÀÏʦ ¸ßÀÏʦ Action ½²¿Î Subject 8Ô End ½²¿Îʼþ Object Caurse ¼ÆËã»úϵѧÉú ¼ÆËã»úÍøÂç ±ÈÈü Participants1 ºì¶Ó AKO ×ãÇòÈü Outcome 3:2 Participants 2 À¶¶Ó Ö²Îï 7

AKO Ê÷ AKO ²Ý (2) Ê÷ºÍ²Ý¶¼ÓÐÒ¶ºÍ¸ù£» ½â£º

(3) Ë®²ÝÊDzݣ¬ÇÒÉú³¤ÔÚË®ÖУ» ½â£º

(4) ¹ûÊ÷ÊÇÊ÷£¬ÇÒ»á½á¹û£» ½â£º

(5) ÀæÊ÷ÊǹûÊ÷ÖеÄÒ»ÖÖ£¬Ëü»á½áÀæ¡£ ½â£º

2.25 ¼ÙÉèÓÐÒÔÏÂÒ»¶ÎÌìÆøÔ¤±¨£º¡°±±¾©µØÇø½ñÌì°×ÌìÇ磬ƫ±±·ç3¼¶£¬×î¸ßÆøÎÂ12o£¬×îµÍÆøÎÂ-2o£¬½µË®¸ÅÂÊ15%¡£¡±ÇëÓÿò¼Ü±íʾÕâһ֪ʶ¡£

½â£º

Frame<ÌìÆøÔ¤±¨> µØÓò£º±±¾© ʱ¶Î£º½ñÌì°×Ìì ÌìÆø£ºÇç ·çÏò£ºÆ«±± ·çÁ¦£º3¼¶ ÆøÎ£º×î¸ß£º12¶È

8

Ò¶ Have Ö²Îï ÊÇÒ»ÖÖ Ê÷ ¸ù Have ÊÇÒ»ÖÖ ²Ý AKO Ö²Îï ²Ý AKO Live Ë®²Ý Ë®ÖÐ AKO Ö²Îï Ê÷ AKO ¹ûÊ÷ Can ½á¹û AKO Ê÷ ¹ûÊ÷ AKO ÀæÊ÷ Can ½áÀæ ×îµÍ£º-2¶È ½µË®¸ÅÂÊ£º15%

2.26 °´¡°Ê¦Éú¿ò¼Ü¡±¡¢¡°½Ìʦ¿ò¼Ü¡±¡¢¡°Ñ§Éú¿ò¼Ü¡±µÄÐÎʽд³öÒ»¸ö¿ò¼ÜϵͳµÄÃèÊö¡£ ½â£ºÊ¦Éú¿ò¼Ü

Frame

Name£ºUnit£¨Last-name£¬First-name£© Sex£ºArea£¨male£¬female£© Default£ºmale Age£ºUnit£¨Years£©

Telephone£ºHome Unit£¨Number£©

Mobile Unit£¨Number£©

½Ìʦ¿ò¼Ü

Frame

AKO Major£ºUnit£¨Major-Name£© Lectures£ºUnit£¨Course-Name£© Field£ºUnit£¨Field-Name£©

Project £ºArea£¨National£¬Provincial£¬Other£© Default£ºProvincial

Paper£ºArea£¨SCI£¬EI£¬Core£¬General£© Default£ºCore ѧÉú¿ò¼Ü Frame

AKO< Teachers-Students > Major£ºUnit£¨Major-Name£© Classes£ºUnit£¨Classes-Name£©

Degree£ºArea£¨doctor£¬mastor, bachelor£© Default£ºbachelor

µÚ3ÕÂ

3.8 ÅжÏÏÂÁй«Ê½ÊÇ·ñΪ¿ÉºÏÒ»£¬Èô¿ÉºÏÒ»£¬ÔòÇó³öÆä×îÒ»°ãºÏÒ»¡£ (1) P(a, b), P(x, y)

9

È·¶¨ÐÔÍÆÀí²¿·Ö²Î¿¼´ð°¸

(2) P(f(x), b), P(y, z) (3) P(f(x), y), P(y, f(b))

(4) P(f(y), y, x), P(x, f(a), f(b)) (5) P(x, y), P(y, x)

½â£º(1) ¿ÉºÏÒ»£¬Æä×îÒ»°ãºÍһΪ£º¦Ò={a/x, b/y}¡£ (2) ¿ÉºÏÒ»£¬Æä×îÒ»°ãºÍһΪ£º¦Ò={y/f(x), b/z}¡£ (3) ¿ÉºÏÒ»£¬Æä×îÒ»°ãºÍһΪ£º¦Ò={ f(b)/y, b/x}¡£ (4) ²»¿ÉºÏÒ»¡£

(5) ¿ÉºÏÒ»£¬Æä×îÒ»°ãºÍһΪ£º¦Ò={ y/x}¡£

3.11 °ÑÏÂÁÐν´Ê¹«Ê½»¯³É×Ӿ伯£º

(1) (?x)(?y)(P(x, y)¡ÄQ(x, y)) (2) (?x)(?y)(P(x, y)¡úQ(x, y))

(3) (?x)(?y)(P(x, y)¡Å(Q(x, y)¡úR(x, y))) (4) (?x) (?y) (?z)(P(x, y)¡úQ(x, y)¡ÅR(x, z))

½â£º(1) ÓÉÓÚ(?x)(?y)(P(x, y)¡ÄQ(x, y))ÒѾ­ÊÇSkolem±ê×¼ÐÍ£¬ÇÒP(x, y)¡ÄQ(x, y)ÒѾ­ÊǺÏÈ¡·¶Ê½£¬ËùÒÔ¿ÉÖ±½ÓÏûȥȫ³ÆÁ¿´Ê¡¢ºÏÈ¡´Ê£¬µÃ { P(x, y), Q(x, y)} ÔÙ½øÐбäÔª»»ÃûµÃ×Ӿ伯£º S={ P(x, y), Q(u, v)}

(2) ¶Ôν´Ê¹«Ê½(?x)(?y)(P(x, y)¡úQ(x, y))£¬ÏÈÏûÈ¥Á¬½Ó´Ê¡°¡ú¡±µÃ£º

(?x)(?y)(?P(x, y)¡ÅQ(x, y))

´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£ ÔÙÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º S={?P(x, y)¡ÅQ(x, y)}

(3) ¶Ôν´Ê¹«Ê½(?x)(?y)(P(x, y)¡Å(Q(x, y)¡úR(x, y)))£¬ÏÈÏûÈ¥Á¬½Ó´Ê¡°¡ú¡±µÃ£º

(?x)(?y)(P(x, y)¡Å(?Q(x, y)¡ÅR(x, y)))

´Ë¹«Ê½ÒÑÎªÇ°Êø·¶Ê½¡£

ÔÙÏûÈ¥´æÔÚÁ¿´Ê£¬¼´ÓÃSkolemº¯Êýf(x)Ìæ»»yµÃ£º

(?x)(P(x, f(x))¡Å?Q(x, f(x))¡ÅR(x, f(x)))

´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£ ×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º

S={P(x, f(x))¡Å?Q(x, f(x))¡ÅR(x, f(x))}

(4) ¶Ôν´Ê(?x) (?y) (?z)(P(x, y)¡úQ(x, y)¡ÅR(x, z))£¬ÏÈÏûÈ¥Á¬½Ó´Ê¡°¡ú¡±µÃ£º

(?x) (?y) (?z)(?P(x, y)¡ÅQ(x, y)¡ÅR(x, z)) ÔÙÏûÈ¥´æÔÚÁ¿´Ê£¬¼´ÓÃSkolemº¯Êýf(x)Ìæ»»yµÃ£º

(?x) (?y) (?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y)))

´Ë¹«Ê½ÒÑΪSkolem±ê×¼ÐÍ¡£ ×îºóÏûȥȫ³ÆÁ¿´ÊµÃ×Ӿ伯£º

S={?P(x, y)¡ÅQ(x, y)¡ÅR(x, f(x,y))}

10

3-13 ÅжÏÏÂÁÐ×Ӿ伯ÖÐÄÄЩÊDz»¿ÉÂú×ãµÄ£º

(1) {?P¡ÅQ, ?Q, P, ?P}

(2) { P¡ÅQ , ?P¡ÅQ, P¡Å?Q, ?P¡Å?Q } (3) { P(y)¡ÅQ(y) , ?P(f(x))¡ÅR(a)}

(4) {?P(x)¡ÅQ(x) , ?P(y)¡ÅR(y), P(a), S(a), ?S(z)¡Å?R(z)} (5) {?P(x)¡ÅQ(f(x),a) , ?P(h(y))¡ÅQ(f(h(y)), a)¡Å?P(z)} (6) {P(x)¡ÅQ(x)¡ÅR(x) , ?P(y)¡ÅR(y), ?Q(a), ?R(b)}

½â£º(1) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º

(2) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌΪ£º

(3) ²»ÊDz»¿ÉÂú×ãµÄ£¬Ô­ÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (4) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ

(5) ²»ÊDz»¿ÉÂú×ãµÄ£¬Ô­ÒòÊDz»ÄÜÓÉËüµ¼³ö¿Õ×Ӿ䡣 (6) ²»¿ÉÂú×㣬Æä¹é½á¹ý³ÌÂÔ

3.14 ¶ÔÏÂÁи÷Ìâ·Ö±ðÖ¤Ã÷GÊÇ·ñΪF1,F2,¡­,FnµÄÂß¼­½áÂÛ£º

(1) F: (?x)(?y)(P(x, y)

G: (?y)(?x)(P(x, y) (2) F: (?x)(P(x)¡Ä(Q(a)¡ÅQ(b)))

G: (?x) (P(x)¡ÄQ(x))

(3) F: (?x)(?y)(P(f(x))¡Ä(Q(f(y)))

G: P(f(a))¡ÄP(y)¡ÄQ(y)

(4) F1: (?x)(P(x)¡ú(?y)(Q(y)¡ú?L(x.y)))

F2: (?x) (P(x)¡Ä(?y)(R(y)¡úL(x.y))) G: (?x)(R(x)¡ú?Q(x))

11

?P¡ÅQ ?Q ?P P NIL P¡ÅQ ?P¡ÅQ P¡Å?Q ?Q ?P¡Å?Q Q NIL (5) F1: (?x)(P(x)¡ú(Q(x)¡ÄR(x)))

F2: (?x) (P(x)¡ÄS(x)) G: (?x) (S(x)¡ÄR(x))

½â£º(1) ÏȽ«FºÍ?G»¯³É×Ӿ伯£º S={P(a,b), ?P(x,b)} ÔÙ¶ÔS½øÐйé½á£º

ËùÒÔ£¬GÊÇFµÄÂß¼­½áÂÛ

(2) ÏȽ«FºÍ?G»¯³É×Ӿ伯 ÓÉFµÃ£ºS1={P(x)£¬(Q(a)¡ÅQ(b))} ÓÉÓÚ?GΪ£º? (?x) (P(x)¡ÄQ(x))£¬¼´

(?x) (? P(x)¡Å? Q(x))£¬

¿ÉµÃ£º S2={? P(x)¡Å? Q(x)}

Òò´Ë£¬À©³äµÄ×Ӿ伯Ϊ£º

S={ P(x)£¬(Q(a)¡ÅQ(b))£¬? P(x)¡Å? Q(x)}

ÔÙ¶ÔS½øÐйé½á£º

ËùÒÔ£¬GÊÇFµÄÂß¼­½áÂÛ

ͬÀí¿ÉÇóµÃ(3)¡¢(4)ºÍ(5)£¬ÆäÇó½â¹ý³ÌÂÔ¡£

3.15 ÉèÒÑÖª£º

(1) Èç¹ûxÊÇyµÄ¸¸Ç×£¬yÊÇzµÄ¸¸Ç×£¬ÔòxÊÇzµÄ׿¸¸£» (2) ÿ¸öÈ˶¼ÓÐÒ»¸ö¸¸Çס£

ʹÓùé½áÑÝÒïÍÆÀíÖ¤Ã÷£º¶ÔÓÚijÈËu£¬Ò»¶¨´æÔÚÒ»¸öÈËv£¬vÊÇuµÄ׿¸¸¡£ ½â£ºÏȶ¨Òåν´Ê F(x,y)£ºxÊÇyµÄ¸¸Ç×

12

P(a,b) ?P(x,b) {a/x} NIL Q(a)¡ÅQ(b) {a/b} Q(a) {a/x} ? P(x)¡Å? Q(x) ? P(a) P(x) {a/x} NIL GF(x,z)£ºxÊÇzµÄ׿¸¸ P(x)£ºxÊÇÒ»¸öÈË

ÔÙÓÃν´Ê°ÑÎÊÌâÃèÊö³öÀ´£º

ÒÑÖªF1£º(?x) (?y) (?z)( F(x,y)¡ÄF(y,z))¡úGF(x,z)) F2£º(?y)(P(x)¡úF(x,y))

ÇóÖ¤½áÂÛG£º(?u) (?v)( P(u)¡úGF(v,u)) È»ºóÔÙ½«F1£¬F2ºÍ?G»¯³É×Ӿ伯£º ¢Ù ?F(x,y)¡Å?F(y,z)¡ÅGF(x,z)

¢Ú ?P(r)¡ÅF(s,r)

¢Û P(u)

¢Ü ?GF(v,u))

¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬Æä¹é½áÍÆÀí¹ý³ÌÈçÏ£º

{x/v,z/u}

{x/s,y/r}

{y/s,z/r}

{y/z}

{y/u}

ÓÉÓÚµ¼³öÁË¿Õ×Ӿ䣬¹Ê½áÂÛµÃÖ¤¡£

3.16 ¼ÙÉèÕű»µÁ£¬¹«°²¾ÖÅɳö5¸öÈËÈ¥µ÷²é¡£°¸Çé·ÖÎöʱ£¬Õê²ìÔ±A˵£º¡°ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±B˵£º¡°Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±C˵£º¡°ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸¡±£¬Õê²ìÔ±D˵£º¡°ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±£¬Õê²ìÔ±E˵£º¡°Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹ء±¡£Èç¹ûÕâ5¸öÕì²ìÔ±µÄ»°¶¼ÊÇ¿ÉÐŵģ¬Ê¹Óùé½áÑÝÒïÍÆÀíÇó³öË­ÊǵÁÇÔ·¸¡£

½â£º(1) Ïȶ¨Òåν´ÊºÍ³£Á¿

ÉèC(x)±íʾx×÷°¸£¬Z±íʾÕÔ£¬Q±íʾǮ£¬S±íʾËL±íʾÀî (2) ½«ÒÑÖªÊÂʵÓÃν´Ê¹«Ê½±íʾ³öÀ´ ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Z)¡ÅC(Q) Ç®ÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(Q)¡ÅC(S) ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈË×÷°¸£ºC(S)¡ÅC(L)

13

?F(x,y)¡Å?F(y,z)¡ÅGF(x,z) ?GF(v,u) ?F(x,y)¡Å?F(y,z) ?P(r)¡ÅF(s,r) ?F(y,z)¡Å?P(y) ?P(r)¡ÅF(s,r) ?P(y)¡Å?P(z) ?P(y) P(u) NIL ÕÔÓëËïÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Z)¡ÄC(S))£¬¼´ ?C (Z) ¡Å?C(S) Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»¸öÈËÓë´Ë°¸Î޹أº? (C (Q)¡ÄC(L))£¬¼´ ?C (Q) ¡Å?C(L) (3) ½«ËùÒªÇóµÄÎÊÌâÓÃν´Ê¹«Ê½±íʾ³öÀ´£¬²¢ÓëÆä·ñ¶¨È¡ÎöÈ¡¡£ Éè×÷°¸ÕßΪu£¬ÔòÒªÇóµÄ½áÂÛÊÇC(u)¡£½«ÆäÓëÆä·ñ)È¡ÎöÈ¡£¬µÃ£º

? C(u) ¡ÅC(u)

(4) ¶ÔÉÏÊöÀ©³äµÄ×Ӿ伯£¬°´¹é½áÔ­Àí½øÐйé½á£¬ÆäÐ޸ĵÄÖ¤Ã÷Ê÷ÈçÏ£º

{Q/u}

Òò´Ë£¬Ç®ÊǵÁÇÔ·¸¡£Êµ¼ÊÉÏ£¬±¾°¸µÄµÁÇÔ·¸²»Ö¹Ò»ÈË¡£¸ù¾Ý¹é½áÔ­Àí»¹¿ÉÒԵóö£º

{S/u}

Òò´Ë£¬ËïÒ²ÊǵÁÇÔ·¸¡£

3.18 ÉèÓÐ×Ӿ伯£º

{P(x)¡ÅQ(a, b), P(a)¡Å?Q(a, b), ?Q(a, f(a)), ?P(x)¡ÅQ(x, b)} ·Ö±ðÓø÷ÖÖ¹é½á²ßÂÔÇó³öÆä¹é½áʽ¡£

½â£ºÖ§³Ö¼¯²ßÂÔ²»¿ÉÓã¬Ô­ÒòÊÇûÓÐÖ¸Ã÷Äĸö×Ó¾äÊÇÓÉÄ¿±ê¹«Ê½µÄ·ñ¶¨»¯¼òÀ´µÄ¡£ ɾ³ý²ßÂÔ²»¿ÉÓã¬Ô­ÒòÊÇ×Ӿ伯ÖÐûÓÐûÓÐÖØÑÔʽºÍ¾ßÓаüÔйØÏµµÄ×Ӿ䡣 µ¥ÎÄ×Ö×Ó¾ä²ßÂԵĹé½á¹ý³ÌÈçÏ£º

14

C(Z)¡ÅC(Q) ?C (Z) ¡Å?C(S) C(Q)¡Å?C(S) C(Q)¡ÅC(S) C(Q) ?C(u)¡ÅC(u) C(Q) C(S)¡ÅC(L) ?C (Q) ¡Å?C(L) C(S)¡Å?C(Q) C(Q)¡ÅC(S) C(S) ?C(u)¡ÅC(u) C(S)

P(x)¡ÅQ(a, b) ?Q(a, f(a)) {b/f(a)} P(a) ?P(x)¡ÅQ(x, b) Q(a, b) {a/x} ?Q(a, f(a)) Q(a, b) {b/f(a)}

ÓÃÏßÐÔÊäÈë²ßÂÔ£¨Í¬Ê±Âú×ã׿ÏȹýÂ˲ßÂÔ£©µÄ¹é½á¹ý³ÌÈçÏ£º

{a/x}

{a/x}

3.19 ÉèÒÑÖª£º

(1) ÄÜÔĶÁµÄÈËÊÇʶ×ֵģ» (2) º£ë಻ʶ×Ö£» (3) ÓÐЩº£ëàÊǺܴÏÃ÷µÄ¡£

ÇëÓùé½áÑÝÒïÍÆÀíÖ¤Ã÷£ºÓÐЩºÜ´ÏÃ÷µÄÈ˲¢²»Ê¶×Ö¡£

½â£ºµÚÒ»²½£¬Ïȶ¨Òåν´Ê£¬ ÉèR(x)±íʾxÊÇÄÜÔĶÁµÄ£» K(y)±íʾyÊÇʶ×ֵģ» W(z) ±íʾzÊǺܴÏÃ÷µÄ£»

µÚ¶þ²½£¬½«ÒÑÖªÊÂʵºÍÄ¿±êÓÃν´Ê¹«Ê½±íʾ³öÀ´

ÄÜÔĶÁµÄÈËÊÇʶ×ֵģº(?x)(R(x))¡úK(x)) º£ë಻ʶ×Ö£º(?y)(?K (y)) ÓÐЩº£ëàÊǺܴÏÃ÷µÄ£º(?z) W(z)

ÓÐЩºÜ´ÏÃ÷µÄÈ˲¢²»Ê¶×Ö£º(?x)( W(z)¡Ä?K(x))

µÚÈý²½£¬½«ÉÏÊöÒÑÖªÊÂʵºÍÄ¿±êµÄ·ñ¶¨»¯³É×Ӿ伯£º ?R(x))¡ÅK(x)

15

P(x)¡ÅQ(a, b) P(a)¡Å?Q(a, b) P(a) ?P(x)¡ÅQ(x, b) Q(a,b) ?Q(a, f(a)) {b/f(a)} NIL ?K (y) W(z) ?W(z)¡ÅK(x))

µÚËIJ½£¬Óùé½áÑÝÒïÍÆÀí½øÐÐÖ¤Ã÷

3.20 ¶Ô×Ӿ伯£º

{P¡ÅQ, Q¡ÅR, R¡ÅW, ?R¡Å?P, ?W¡Å?Q, ?Q¡Å?R } ÓÃÏßÐÔÊäÈë²ßÂÔÊÇ·ñ¿ÉÖ¤Ã÷¸Ã×Ӿ伯µÄ²»¿ÉÂú×ãÐÔ£¿ ½â£ºÓÃÏßÐÔÊäÈë²ßÂÔ²»ÄÜÖ¤Ã÷×Ӿ伯

{P¡ÅQ, Q¡ÅR, R¡ÅW, ?R¡Å?P, ?W¡Å?Q, ?Q¡Å?R }

µÄ²»¿ÉÂú×ãÐÔ¡£Ô­ÒòÊǰ´ÏßÐÔÊäÈë²ßÂÔ£¬²»´æÔÚ´Ó¸Ã×Ӿ伯µ½¿Õ×Ӿ䵨¹é½á¹ý³Ì¡£

3.21 ¶ÔÏßÐÔÊäÈë²ßÂԺ͵¥ÎÄ×Ö×Ó¾ä²ßÂÔ·Ö±ð¸ø³öÒ»¸ö·´Àý£¬ÒÔ˵Ã÷ËüÃÇÊDz»Í걸µÄ¡£

3.22 ·Ö±ð˵Ã÷ÕýÏò¡¢ÄæÏò¡¢Ë«ÏòÓë/»òÐÎÑÝÒïÍÆÀíµÄ»ù±¾Ë¼Ïë¡£

3.23 ÉèÒÑÖªÊÂʵΪ

((P¡ÅQ)¡ÄR) ¡Å(S¡Ä(T¡ÅU)) F¹æÔòΪ

S¡ú(X¡ÄY)¡ÅZ

ÊÔÓÃÕýÏòÑÝÒïÍÆÀíÍÆ³öËùÓпÉÄܵÄ×ÓÄ¿±ê¡£

½â£ºÏȸø³öÒÑÖªÊÂʵµÄÓë/»òÊ÷£¬ÔÙÀûÓÃF¹æÔò½øÐÐÍÆÀí£¬Æä¹æÔòÑÝÒïϵͳÈçÏÂͼËùʾ¡£ ÓɸÃͼ¿ÉÒÔÖ±½Óд³öËùÓпÉÄܵÄÄ¿±ê×Ó¾äÈçÏ£º P¡ÅQ¡Å£Ô¡Å£Õ P¡ÅQ¡Å£Ø¡Å£Ú P¡ÅQ¡ÅY¡Å£Ú

R¡ÅT¡ÅU R¡ÅX¡ÅZ R¡ÅY¡ÅZ ËùÓÐ×ÓËùÓÐ Ä¿±ê Ä¿±ê

?W(z)¡ÅK(x)) W(z) K(z) W(z) NIL P Q R X Y Z T U 16 X Y X Y X¡ÄY S Z F ¹æ Ôò P Q R T S U ÒÑ Öª Ê ʵ

(P¡ÅQ) T¡ÅU (S¡Ä(T¡ÅU)) ((P¡ÅQ)¡ÄR) ((P¡ÅQ)¡ÄR) ¡Å(S¡Ä(T¡ÅU)) 3.24 ÉèÓÐÈçÏÂÒ»¶Î֪ʶ£º

¡°ÕÅ¡¢ÍõºÍÀî¶¼ÊôÓÚ¸ßɽЭ»á¡£¸ÃЭ»áµÄÿ¸ö³ÉÔ±²»ÊÇ»¬Ñ©Ô˶¯Ô±£¬¾ÍÊǵÇɽÔ˶¯Ô±£¬ÆäÖв»Ï²»¶ÓêµÄÔ˶¯Ô±ÊǵÇɽÔ˶¯Ô±£¬²»Ï²»¶Ñ©µÄÔ˶¯Ô±²»ÊÇ»¬Ñ©Ô˶¯Ô±¡£Íõ²»Ï²»¶ÕÅËùϲ»¶µÄÒ»Çж«Î÷£¬¶øÏ²»¶ÕÅËù²»Ï²»¶µÄÒ»Çж«Î÷¡£ÕÅϲ»¶ÓêºÍÑ©¡£¡±

ÊÔÓÃν´Ê¹«Ê½¼¯ºÏ±íʾÕâ¶Î֪ʶ£¬ÕâЩν´Ê¹«Ê½ÒªÊʺÏÒ»¸öÄæÏòµÄ»ùÓÚ¹æÔòµÄÑÝÒïϵͳ¡£ÊÔ˵Ã÷ÕâÑùÒ»¸öϵͳÔõÑù²ÅÄܻشðÎÊÌ⣺

¡°¸ßɽ¾ãÀÖ²¿ÖÐÓÐûÓÐÒ»¸ö³ÉÔ±£¬ËûÊÇÒ»¸öµÇɽÔ˶¯Ô±£¬µ«²»ÊÇÒ»¸ö»¬Ñ©Ô˶¯Ô±£¿¡± ½â£º(1) Ïȶ¨Òåν´Ê

A(x) ±íʾxÊǸßɽЭ»á»áÔ± S(x) ±íʾxÊÇ»¬Ñ©Ô˶¯Ô± C(x) ±íʾxÊǵÇɽÔ˶¯Ô± L(x,y) ±íʾx ϲ»¶y (2) ½«ÎÊÌâÓÃν´Ê±íʾ³öÀ´ ¡°ÕÅ¡¢ÍõºÍÀî¶¼ÊôÓÚ¸ßɽЭ»á

A(Zhang)¡ÄA(Wang)¡ÄA(Li)

¸ßɽЭ»áµÄÿ¸ö³ÉÔ±²»ÊÇ»¬Ñ©Ô˶¯Ô±£¬¾ÍÊǵÇɽÔ˶¯Ô±

(?x)(A(x)¡Ä?S(x)¡úC(x))

¸ßɽЭ»áÖв»Ï²»¶ÓêµÄÔ˶¯Ô±ÊǵÇɽÔ˶¯Ô±

(?x)(?L(x, Rain)¡úC(x))

¸ßɽЭ»áÖв»Ï²»¶Ñ©µÄÔ˶¯Ô±²»ÊÇ»¬Ñ©Ô˶¯Ô±

17

(?x)(?L(x, Snow)¡ú? S(x)) Íõ²»Ï²»¶ÕÅËùϲ»¶µÄÒ»Çж«Î÷

(?y)( L(Zhang, y)¡ú? L(Wang ,y))

Íõϲ»¶ÕÅËù²»Ï²»¶µÄÒ»Çж«Î÷

(?y)(? L(Zhang, y)¡úL(Wang, y)) ÕÅϲ»¶ÓêºÍÑ©

L(Zhang , Rain)¡ÄL(Zhang , Snow) (3) ½«ÎÊÌâÒªÇóµÄ´ð°¸ÓÃν´Ê±íʾ³öÀ´

¸ßɽ¾ãÀÖ²¿ÖÐÓÐûÓÐÒ»¸ö³ÉÔ±£¬ËûÊÇÒ»¸öµÇɽÔ˶¯Ô±£¬µ«²»ÊÇÒ»¸ö»¬Ñ©Ô˶¯Ô±£¿ (?x)( A(x)¡úC(x)¡Ä? S(x))

(4) ΪÁ˽øÐÐÍÆÀí£¬°ÑÎÊÌâ»®·ÖΪÒÑÖªÊÂʵºÍ¹æÔòÁ½´ó²¿·Ö¡£¼ÙÉ裬»®·ÖÈçÏ£º

ÒÑÖªÊÂʵ£º

A(Zhang)¡ÄA(Wang)¡ÄA(Li) L(Zhang , Rain)¡ÄL(Zhang , Snow) ¹æÔò£º

(?x)(A(x)¡Ä?S(x)¡úC(x)) (?x)(?L(x, Rain)¡úC(x)) (?x)(?L(x, Snow)¡ú? S(x)) (?y)( L(Zhang, y)¡ú? L(Wang ,y)) (?y)(? L(Zhang, y)¡úL(Wang, y))

(5) °ÑÒÑÖªÊÂʵ¡¢¹æÔòºÍÄ¿±ê»¯³ÉÍÆÀíËùÐèÒªµÄÐÎʽ

ÊÂʵÒѾ­ÊÇÎÄ×ֵĺÏÈ¡ÐÎʽ£º

f1: A(Zhang)¡ÄA(Wang)¡ÄA(Li)

f2: L (Zhang , Rain)¡ÄL(Zhang , Snow) ½«¹æÔòת»¯Îªºó¼þΪµ¥ÎÄ×ÖµÄÐÎʽ£º

r1: A(x)¡Ä?S(x)¡úC(x)) r2: ?L(x, Rain)¡úC(x) r3: ?L(x, Snow)¡ú? S(x) r4: L(Zhang, y)¡ú? L(Wang ,y) r5: ? L(Zhang, y)¡úL(Wang , y)

½«Ä¿±ê¹«Ê½×ª»»ÎªÓë/»òÐÎʽ

? A(x)¡Å(C(x)¡Ä? S(x))

(6) ½øÐÐÄæÏòÍÆÀí

ÄæÏòÍÆÀíµÄ¹Ø¼üÊÇÒªÄܹ»ÍƳöL(Zhang , Rain)¡ÄL(Zhang , Snow)£¬ÆäÄæÏòÑÝÒï¹ý³ÌÈçÏÂͼËùʾ¡£

? A(x)¡Å(C(x)¡Ä? S(x)) ? A(x) C(x) C(x)¡Ä? S(x) 18 ? S(x)

µÚ4ÕÂ

4.5 ÓÐһũ·ò´øÒ»ÌõÀÇ£¬Ò»Ö»ÑòºÍÒ»¿òÇà²ËÓë´ÓºÓµÄ×󰶳˴¬µ¹ÓÒ°¶£¬µ«Êܵ½ÏÂÁÐÌõ¼þµÄÏÞÖÆ£º (1) ´¬Ì«Ð¡£¬Å©·òÿ´ÎÖ»ÄÜ´øÒ»Ñù¶«Î÷¹ýºÓ£» (2) Èç¹ûûÓÐÅ©·ò¿´¹Ü£¬ÔòÀÇÒª³ÔÑò£¬ÑòÒª³Ô²Ë¡£

ÇëÉè¼ÆÒ»¸ö¹ýºÓ·½°¸£¬Ê¹µÃÅ©·ò¡¢ÀË¡¢Ñò¶¼Äܲ»ÊÜËðʧµÄ¹ýºÓ£¬»­³öÏàÓ¦µÄ״̬¿Õ¼äͼ¡£

Ìâʾ£º(1) ÓÃËÄÔª×飨ũ·ò£¬ÀÇ£¬Ñò£¬²Ë£©±íʾ״̬£¬ÆäÖÐÿ¸öÔªËØ¶¼Îª0»ò1£¬ÓÃ0±íʾÔÚ×ó°¶£¬ÓÃ1±íʾÔÚÓÒ°¶¡£

(2) °Ñÿ´Î¹ýºÓµÄÒ»ÖÖ°²ÅÅ×÷ΪһÖÖ²Ù×÷£¬Ã¿´Î¹ýºÓ¶¼±ØÐëÓÐÅ©·ò£¬ÒòΪֻÓÐËû¿ÉÒÔ»®´¬¡£ ½â£ºµÚÒ»²½£¬¶¨ÒåÎÊÌâµÄÃèÊöÐÎʽ

ÓÃËÄÔª×éS=£¨f£¬w£¬s£¬v£©±íʾÎÊÌâ״̬£¬ÆäÖУ¬f£¬w£¬sºÍv·Ö±ð±íʾũ·ò£¬ÀÇ£¬ÑòºÍÇà²ËÊÇ·ñÔÚ×ó°¶£¬ËüÃǶ¼¿ÉÒÔÈ¡1»ò0£¬È¡1±íʾÔÚ×ó°¶£¬È¡0±íʾÔÚÓÒ°¶¡£

µÚ¶þ²½£¬ÓÃËù¶¨ÒåµÄÎÊÌâ״̬±íʾ·½Ê½£¬°ÑËùÓпÉÄܵÄÎÊÌâ״̬±íʾ³öÀ´£¬°üÀ¨ÎÊÌâµÄ³õʼ״̬ºÍÄ¿±ê״̬¡£

ÓÉÓÚ״̬±äÁ¿ÓÐ4¸ö£¬Ã¿¸ö״̬±äÁ¿¶¼ÓÐ2ÖÖȡֵ£¬Òò´ËÓÐÒÔÏÂ16ÖÖ¿ÉÄܵÄ״̬£º S0=(1,1,1,1)£¬S1=(1,1,1,0)£¬S2=(1,1,0,1)£¬S3=(1,1,0,0) S4=(1,0,1,1)£¬S5=(1,0,1,0)£¬S6=(1,0,0,1)£¬S7=(1,0,0,0) S8=(0,1,1,1)£¬S9=(0,1,1,0)£¬S10=(0,1,0,1)£¬S11=(0,1,0,0) S12=(0,0,1,1)£¬S13=(0,0,1,0)£¬S14=(0,0,0,1)£¬S15=(0,0,0,0)

ÆäÖУ¬×´Ì¬S3£¬S6£¬S7£¬S8£¬S9£¬S12ÊDz»ºÏ·¨×´Ì¬£¬S0ºÍS15·Ö±ðÊdzõʼ״̬ºÍÄ¿±ê״̬¡£

µÚÈý²½£¬¶¨Òå²Ù×÷£¬¼´ÓÃÓÚ״̬±ä»»µÄËã·û×éF

ÓÉÓÚÿ´Î¹ýºÓ´¬É϶¼±ØÐëÓÐÅ©·ò£¬ÇÒ³ýÅ©·òÍâ´¬ÉÏÖ»ÄÜÔØÀÇ£¬ÑòºÍ²ËÖеÄÒ»ÖÖ£¬¹ÊËã·û¶¨ÒåÈçÏ£º L(i)±íʾũ·ò´Ó×ó°¶½«µÚiÑù¶«Î÷Ë͵½ÓÒ°¶£¨i=1±íʾÀÇ£¬i=2±íʾÑò£¬i=3±íʾ²Ë£¬i=0±íʾ´¬ÉϳýÅ©·òÍâ²»ÔØÈκζ«Î÷£©¡£ÓÉÓÚÅ©·ò±ØÐëÔÚ´¬ÉÏ£¬¹Ê¶ÔÅ©·òµÄ±íʾʡÂÔ¡£

R (i)±íʾũ·ò´ÓÓÒ°¶½«µÚiÑù¶«Î÷´øµ½×ó°¶£¨i=1±íʾÀÇ£¬i=2±íʾÑò£¬i=3±íʾ²Ë£¬i=0±íʾ´¬ÉϳýÅ©·òÍâ²»ÔØÈκζ«Î÷£©¡£Í¬Ñù£¬¶ÔÅ©·òµÄ±íʾʡÂÔ¡£

ÕâÑù£¬Ëù¶¨ÒåµÄËã·û×éF¿ÉÒÔÓÐÒÔÏÂ8ÖÖËã·û£º

19

ËÑË÷²ßÂÔ²¿·Ö²Î¿¼´ð°¸

r2 ?L(x, Rain) {Wang/x, y/Rain} ?L(Wang, y) r4 L(Zhang, y) {Rain/y} L(Zhang, Rain) {Snow/y} r4 r3?L(x, Snow) {Wang /x, y/Snow} ?L(Wang, y) L(Zhang, y) L(Zhang, Snow) L (0)£¬L (1)£¬L (2)£¬L (3) R(0)£¬R(1)£¬R (2)£¬R (3)

µÚËIJ½£¬¸ù¾ÝÉÏÊö¶¨ÒåµÄ״̬ºÍ²Ù×÷½øÐÐÇó½â¡£ ¸ÃÎÊÌâÇó½â¹ý³ÌµÄ״̬¿Õ¼äͼÈçÏ£º

4.7 Ô²ÅÌÎÊÌâ¡£ÉèÓдóС²»µÈµÄÈý¸öÔ²ÅÌA¡¢B¡¢CÌ×ÔÚÒ»¸ùÖáÉÏ£¬Ã¿¸öÅÌÉ϶¼±êÓÐÊý×Ö1¡¢2¡¢3¡¢4£¬²¢ÇÒÿ¸öÔ²Å̶¼¿ÉÒÔ¶ÀÁ¢µÄÈÆÖá×öÄæÊ±Õëת¶¯£¬Ã¿´Îת¶¯90¡ã£¬Æä³õʼ״̬S0ºÍÄ¿±ê״̬SgÈçͼ4-31Ëùʾ£¬ÇëÓùã¶ÈÓÅÏÈËÑË÷ºÍÉî¶ÈÓÅÏÈËÑË÷£¬Çó³ö´ÓS0µ½SgµÄ·¾¶¡£

(1,1,l,1) L(2) (0,1,0,1) R(0) (1,1,0,1) L(1) (0,0,0,1) R(2) (1,0,1,1) L(3)

(0,0,1,0) R(0)

(1,0,1,0) L(2) (0,0,0,0)

L(3) (0,1,0,0)

R(2) (1,1,1,0) L(2)

20

2 C B 2 A 2 3 3 3 1 1 1 4 4 4 1 C 2 B 4 A 2 3 1 3 1 4 2 4 3

³õʼ״̬S0 Ä¿±ê״̬Sg

ͼ 4-31 Ô²ÅÌÎÊÌâ

½â£ºÉèÓÃqA£¬qBºÍqC·Ö±ð±íʾ°ÑAÅÌ£¬BÅ̺ÍCÅÌÈÆÖáÄæÊ±Õëת¶¯90o£¬ÕâЩ²Ù×÷£¨Ëã·û£©µÄÅÅÁÐ˳ÐòÊÇqA£¬qB£¬qC¡£

Ó¦Óùã¶ÈÓÅÏÈËÑË÷£¬¿ÉµÃµ½ÈçÏÂËÑË÷Ê÷¡£ÔÚ¸ÃËÑË÷Ê÷ÖУ¬Öظ´³öÏÖµÄ״̬²»ÔÙ»®³ö£¬½ÚµãÅԱߵıêʶSi£¬i=0,1,2,¡­£¬Îª°´½Úµã±»À©Õ¹µÄ˳Ðò¸ø³öµÄ¸Ã½ÚµãµÄ״̬±êʶ¡£

ÓɸÃͼ¿ÉÒÔ¿´³ö£¬´Ó³õʼ״̬S0µ½Ä¿±ê״̬SgµÄ·¾¶ÊÇ S0¡ú2¡ú5¡ú13(Sg)

21

qA 2 S1 2 1 3 3 24 11 3 4 4 qB 2 S0 C 2 B 2 A 1 1 1 3 3 3 4 4 4 2 1 2 4 3 4 qB S6 qC S3 1 2 2 2 3 3 1 1 4 4 4 3 S2 3 2 3 qC 1 4 1 qA 2 1 S4 S5 2 22 1 1 1 3 3 1 4 3 1 1 3 2 2 4 4 1 23 24 14 3 1 3 2 3 3 4 3 4 4 3 4 qA 2 2 3 qB S10 2 4 2 4 2 4 S7 1 3 1 2 2 3 1 1 2 4 3 3 S8 1 4 4 qC qC 2 1 4 S11 1 S12¼´Sg 2 4 3 3 4 2 1 1 3 2 1 3 1 4 3 4 1 2 3 1 1 2 2 4 4 3 3 4 4 4.7ÌâµÄ¹ã¶ÈÓÅÏÈËÑË÷Ê÷

ÆäÉî¶ÈÓÅÏÈËÑË÷ÂÔ¡£

S9 4 2 2 1 3 3 1 1 3 4 4 2 4.8 ͼ4-32ÊÇ5¸ö³ÇÊеĽ»Í¨Í¼£¬³ÇÊÐÖ®¼äµÄÁ¬ÏßÅԱߵÄÊý×ÖÊdzÇÊÐÖ®¼ä·³ÌµÄ·ÑÓá£ÒªÇó´ÓA³Ç³ö·¢£¬¾­¹ýÆäËü¸÷³ÇÊÐÒ»´ÎÇÒ½öÒ»´Î£¬×îºó»Øµ½A³Ç£¬ÇëÕÒ³öÒ»Ìõ×îÓÅÏß·¡£

½â£ºÕâ¸öÎÊÌâÓÖ³ÆÎªÂÃÐÐÉÌÎÊÌ⣨travelling salesman problem, TSP£©»ò»õÀɵ£ÎÊÌ⣬ÊÇÒ»¸ö½ÏÓÐÆÕ±éÐÔµÄʵ¼ÊÓ¦ÓÃÎÊÌâ¡£¸ù¾ÝÊýѧÀíÂÛ£¬¶Ôn¸ö³ÇÊеÄÂÃÐÐÉÌÎÊÌ⣬Æä·â±Õ·¾¶µÄÅÅÁÐ×ÜÊýΪ£º

(n!)/n=(n-1)!

Æä¼ÆËãÁ¿Ï൱´ó¡£ÀýÈ磬µ±n=20ʱ£¬ÒªÇî¾ÙÆäËùÓз¾¶£¬¼´Ê¹ÓÃÒ»¸öÿÃëÒ»ÒڴεļÆËã»úÀ´ËãÒ²ÐèÒª350ÄêµÄʱ¼ä¡£Òò´Ë£¬¶ÔÕâ

22

A 10 B 2 8 9 C 11 6 3 12 8 D 9 E 4-32 ½»Í¨·ÑÓÃͼ

ÀàÎÊÌâÖ»ÄÜÓÃËÑË÷µÄ·½·¨À´½â¾ö¡£

ÏÂͼÊǶÔͼ4-32°´×îС´ú¼ÛËÑË÷ËùµÃµ½µÄËÑË÷Ê÷£¬Ê÷ÖеĽڵãΪ³ÇÊÐÃû³Æ£¬½Úµã±ßÉϵÄÊý×ÖΪ¸Ã½ÚµãµÄ´ú¼Ûg¡£Æä¼ÆË㹫ʽΪ

g(ni+1)=g(ni)+c(ni, ni+1)

ÆäÖУ¬c(ni,ni+1)Ϊ½Úµãniµ½ni+1½ÚµãµÄ±ß´ú¼Û¡£

3 8 C 18 8

B 10 12 6 D 22

16 E 8 10 C 2 3

8 E 10 6 9 2 A 0 9 11 D 9 12 3 B 21 8 6

9 18 E 6 B 17 E 11 8 9 C 19

20 D B 10 D 5 12 6

C 12 8 8

8 12 3 12

8 12 9 6 8 3 8 9 23 31 29 25 22 16 19 20 20 C 25 D B 32 C C E 16 B E D D B E

22

21 24 14 26 B 24 27 D E 26 20 27 C D 25 B 17 E C C E B D 8 8 9 9 12 12 3 6 6

8 6 6 12 9 8 9 3 3 31 27 28 31 26 31 E 33 E D D B E 26 B 28 B D

32 B 34 30 23 20 C E D 27 C 28 E D 35 B E 28

¿ÉÒÔ¿´³ö£¬Æä×î¶Ì·¾­ÊÇ A-C-D-E-B-A »ò

A-B-E-D-C-A Æäʵ£¬ËüÃÇÊÇͬһÌõ·¾­¡£

4.11 ÉèÓÐÈçϽṹµÄÒÆ¶¯½«ÅÆÓÎÏ·£º

B B W W E 30 A 2 10 A 30

3 9 ͼ4.32µÄ×îС´ú¼ÛËÑË÷Ê÷

ÆäÖУ¬B±íʾºÚÉ«½«ÅÆ£¬W±íÊǰ×É«½«ÅÆ£¬E±íʾ¿Õ¸ñ¡£ÓÎÏ·µÄ¹æ¶¨×ß·¨ÊÇ£º

(1) ÈÎÒâÒ»¸ö½«ÅÆ¿ÉÒÆÈëÏàÁڵĿոñ£¬¹æ¶¨Æä´ú¼ÛΪ1£»

(2) ÈκÎÒ»¸ö½«ÅÆ¿ÉÏà¸ô1¸öÆäËüµÄ½«ÅÆÌøÈë¿Õ¸ñ£¬Æä´ú¼ÛÎªÌø¹ý½«ÅƵÄÊýÄ¿¼Ó1¡£

ÓÎÏ·Òª´ïµ½µÄÄ¿±êʲÊǰÑËùÓÐW¶¼ÒƵ½BµÄ×ó±ß¡£¶ÔÕâ¸öÎÊÌ⣬Ç붨ÒåÒ»¸öÆô·¢º¯Êýh(n)£¬²¢¸ø³öÓÃÕâ¸öÆô·¢º¯Êý²úÉúµÄËÑË÷Ê÷¡£ÄãÄÜ·ñÅбðÕâ¸öÆô·¢º¯ÊýÊÇ·ñÂú×ãϽâÒªÇó£¿ÔÙÇó³öµÄËÑË÷Ê÷ÖУ¬¶ÔËùÓнڵãÊÇ·ñÂú×ãµ¥µ÷ÏÞÖÆ£¿

½â£ºÉèh(x)=ÿ¸öW×ó±ßµÄBµÄ¸öÊý£¬f(x)=d(x)+3*h(x)£¬ÆäËÑË÷Ê÷ÈçÏ£º

23

f(x)=0+12=12

f(x)=2+12=14

B B E W W B B W W E f(x)=1+12=13 B B W E W B B E W W f(x)=1+12=13 f(x)=2+9=11 B E W B W f(x)=3+9=12 E B W B W f(x)=4+6=10 W B E B W f(x)=5+3=8 W B W B E W B W E B f(x)=6+3=9 f(x)=7+0=7 W B W E B 4.14 ÉèÓÐÈçͼ4-34µÄÓë/»ò/Ê÷£¬Çë·Ö±ð°´ºÍ´ú¼Û·¨¼°×î´ó´ú¼Û·¨Çó½âÊ÷µÄ´ú¼Û¡£

5 B 7 D 2 t1

2 E 3 t2

A 6 C 2 t3 1 t4 ͼ4.34 ϰÌâ4.14µÄÓë/»òÊ÷

½â£ºÈô°´ºÍ´ú¼Û·¨£¬Ôò¸Ã½âÊ÷µÄ´ú¼ÛΪ£º h(A)=2+3+2+5+2+1+6=21 Èô°´×î´ó´ú¼Û·¨£¬Ôò¸Ã½âÊ÷µÄ´ú¼ÛΪ£º

h(A)=max{h(B)+5, h(C)+6} = max{(h(E)+2)+5, h(C)+6} = max{(max(2, 3)+2)+5, max(2, 1)+6}

=max((5+5, 2+6)=10

24

4.15 ÉèÓÐÈçͼ4-35ËùʾµÄ²©ÞÄÊ÷£¬ÆäÖÐ×îÏÂÃæµÄÊý×ÖÊǼÙÉèµÄ¹ÀÖµ£¬Çë¶Ô¸Ã²©ÞÄÊ÷×÷ÈçϹ¤×÷£º

(1) ¼ÆËã¸÷½ÚµãµÄµ¹ÍÆÖµ£»

(2) ÀûÓæÁ-¦Â¼ôÖ¦¼¼Êõ¼ôÈ¥²»±ØÒªµÄ·ÖÖ¦¡£

S0 A B

C G H I D J K E L M F N

0 5 -3 3 3 6 6 -2 3 5 4 -3 0 6 8 9 -3 ͼ4.35 ϰÌâ4.15µÄ²©ÞÄÊ÷

½â£º¸÷½ÚµãµÄµ¹ÍÆÖµºÍ¼ôÖ¦Çé¿öÈçÏÂͼËùʾ£º

¡Ý4 ¡Ü0 A S0 B

¡Ü4 ¡Ý0 ¡Ü0 G C ¡Ü-3 H ¡Ü3 ¡Ý3 I D J ¡Ü4 ¡Ý4 E L ¡Ü6 ¡Ý6 M F K ¡Ü-3 N

0 5 -3 3 3 3 6 6 -2 3 5 4 -3 0 6 8 9 -3

ϰÌâ4.15µÄµ¹ÍÆÖµºÍ¼ôÖ¦Çé¿ö

µÚ5Õ ¼ÆËãÖÇÄܲ¿·Ö²Î¿¼´ð°¸

5.15 ¶ÔÒÅ´«·¨µÄÑ¡Ôñ²Ù×÷£ºÉèÖÖȺ¹æÄ£Îª4£¬¸öÌå²ÉÓöþ½øÖƱàÂ룬ÊÊÓ¦¶Èº¯ÊýΪ f(x)=x£¬³õʼÖÖȺÇé¿öÈçϱíËùʾ£º

25

2

±àºÅ S01 S02 S03 S04 ¸öÌå´® 1010 0100 1100 0111 x 10 4 12 7 ÊÊÓ¦Öµ °Ù·Ö±È ÀÛ¼Æ°Ù·Ö±È Ñ¡ÖдÎÊý Èô¹æ¶¨Ñ¡Ôñ¸ÅÂÊΪ100%,Ñ¡ÔñË㷨ΪÂÖÅ̶ÄËã·¨£¬ÇÒÒÀ´ÎÉú³ÉµÄ4¸öËæ»úÊýΪ0.42, 0.16, 0.89, 0.71£¬ÇëÌîдÉϱíÖеÄÈ«²¿ÄÚÈÝ£¬²¢Çó³ö¾­±¾´ÎÑ¡Ôñ²Ù×÷ºóËùµÃµ½µÄеÄÖÖȺ¡£

½â£º±í¸ñµÄÍêÕûÄÚÈÝΪ£º

±àºÅ S01 S02 S03 S04 ¸öÌå´® 1010 0100 1100 0111 x 10 4 12 7 ÊÊÓ¦Öµ 100 16 144 49 °Ù·Ö±È 32.36 5.18 44.60 15.86 ÀÛ¼Æ°Ù·Ö±È 32.36 37.54 84.14 100 Ñ¡ÖдÎÊý 1 0 2 1 ±¾´ÎÑ¡ÔñºóËùµÃµ½µÄеÄÖÖȺΪ£º S01=1100 S02=1010 S03=0111 S04=1100

5.18 ÉèijС×éÓÐ5¸öͬѧ£¬·Ö±ðΪS1,S2,S3,S4,S5¡£Èô¶Ôÿ¸öͬѧµÄ¡°Ñ§Ï°ºÃ¡±³Ì¶È´ò·Ö£º S1:95 S2:85 S3:80 S4:70 S5:90

ÕâÑù¾ÍÈ·¶¨ÁËÒ»¸öÄ£ºý¼¯F£¬Ëü±íʾ¸ÃС×éͬѧ¶Ô¡°Ñ§Ï°ºÃ¡±Õâһģºý¸ÅÄîµÄÁ¥Êô³Ì¶È£¬Çëд³ö¸ÃÄ£ºý¼¯¡£ ½â£º¶ÔÄ£ºý¼¯ÎªF£¬¿É±íʾΪ£º F=95/ S1+85/S2+80/ S3+70/S4+90/S5 »ò

F={95/ S1, 85/S2, 80/ S3, 70/S4, 90/S5}

5.19 ÉèÓÐÂÛÓò

U={u1, u2, u3, u4, u5} ²¢ÉèF¡¢GÊÇUÉϵÄÁ½¸öÄ£ºý¼¯£¬ÇÒÓÐ F=0.9/u1+0.7/u2+0.5/u3+0.3/u4 G=0.6/u3+0.8/u4+1/u5 Çë·Ö±ð¼ÆËã F¡ÉG£¬F¡ÈG£¬¦èF¡£

½â£ºF¡ÉG=(0.9¡Ä0)/ u1+(0.7¡Ä0)/ u2+(0.5¡Ä0.6)/u3+(0.3¡Ä0.8)/u4+(0¡Ä1)/u5 =0/ u1+0/ u2+0.5/u3+0.3/u4+0/u5 =0.5/u3+0.3/u4

F¡ÈG=(0.9¡Å0)/ u1+(0.7¡Å0)/ u2+(0.5¡Å0.6)/u3+(0.3¡Å0.8)/u4+(0¡Å1)/u5

=0.9/ u1+0.7/ u2+0.6/u3+0.8/u4+1/u5

¦èF=(1-0.9)/ u1+(1-0.7)/ u2+(1-0.5)/u3+(1-0.3)/u4+(1-0)/u5

=0.1/ u1+0.3/ u2+0.5/u3+0.7/u4+1/u5

26

5.21ÉèÓÐÈçÏÂÁ½¸öÄ£ºý¹ØÏµ£º

?0.30.70.2?R1??100.4?????00.51??Çëд³öR1ÓëR2µÄºÏ³ÉR1¦ÏR2¡£

?0.20.8?R2??0.60.4?????0.90.1?? ½â£ºR(1,1)=(0.3¡Ä0.2)¡Å(0.7¡Ä0.6)¡Å(0.2¡Ä0.9)= 0.2¡Å0.6¡Å0.2=0.6

R(1,2)=(0.3¡Ä0.8)¡Å(0.7¡Ä0.4)¡Å(0.2¡Ä0.1)= 0.3¡Å0.4¡Å0.1=0.4 R(2,1)=(1¡Ä0.2)¡Å(0¡Ä0.6)¡Å(0.4¡Ä0.9)= 0.2¡Å0¡Å0.4=0.4 R(2,2)=(1¡Ä0.8)¡Å(0¡Ä0.4)¡Å(0.4¡Ä0.1)= 0.8¡Å0¡Å0.1=0.8 R(3,1)=(0¡Ä0.2)¡Å(0.5¡Ä0.6)¡Å(1¡Ä0.9)= 0.2¡Å0.6¡Å0.9=0.9 R(3,2)=(0¡Ä0.8)¡Å(0.5¡Ä0.4)¡Å(1¡Ä0.1)= 0¡Å0.4¡Å0.1=0.4

Òò´ËÓÐ

?0.60.4??

R1?R2??0.40.8????0.90.4??

5.22 ÉèFÊÇÂÛÓòUÉϵÄÄ£ºý¼¯£¬RÊÇU¡ÁVÉϵÄÄ£ºý¹ØÏµ£¬FºÍR·Ö±ðΪ£º

F?{0.4,0.6,0.8}?0.10.30.5?R??0.40.60.8?????0.60.30??ÇóÄ£ºý±ä»»F¦ÏR¡£ ½â£º

FR?{0.4?0.1?0.6?0.4?0.8?0.6,0.4?0.3?0.6?0.6?0.8?0.30.4?0.5?0.6?0.8?0.8?0} ={0.1¡Å0.4¡Å0.6, 0.3¡Å0.6¡Å0.3,0.4¡Å0.6¡Å0 } ={0.6, 0.6, 0.6}

µÚ6ÕÂ

6.8 ÉèÓÐÈçÏÂÒ»×éÍÆÀí¹æÔò: r1: IF E1 THEN E2 (0.6)

r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (0.8) r4: IF E5 THEN H (0.9)

27

²»È·¶¨ÐÔÍÆÀí²¿·Ö²Î¿¼´ð°¸

ÇÒÒÑÖªCF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7¡£ÇóCF(H)=? ½â£º(1) ÏÈÓÉr1ÇóCF(E2) CF(E2)=0.6 ¡Á max{0,CF(E1)} =0.6 ¡Á max{0,0.5}=0.3

(2) ÔÙÓÉr2ÇóCF(E4)

CF(E4)=0.7 ¡Á max{0, min{CF(E2 ), CF(E3 )}} =0.7 ¡Á max{0, min{0.3, 0.6}}=0.21

(3) ÔÙÓÉr3ÇóCF1(H)

CF1(H)= 0.8 ¡Á max{0,CF(E4)} =0.8 ¡Á max{0, 0.21)}=0.168 (4) ÔÙÓÉr4ÇóCF2(H)

CF2(H)= 0.9 ¡Ámax{0,CF(E5)} =0.9 ¡Ámax{0, 0.7)}=0.63

(5) ×îºó¶ÔCF1(H )ºÍCF2(H)½øÐкϳɣ¬Çó³öCF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) ¡Á CF2(H) =0.692

6.10 ÉèÓÐÈçÏÂÍÆÀí¹æÔò

r1: IF E1 THEN (2, 0.00001) H1 r2: IF E2 THEN (100, 0.0001) H1 r3: IF E3 THEN (200, 0.001) H2 r4: IF H1 THEN (50, 0.1) H2

ÇÒÒÑÖªP(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, ÓÖÓÉÓû§¸æÖª£º P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 ÇëÓÃÖ÷¹ÛBayes·½·¨ÇóP(H2|S1, S2, S3)=? ½â£º(1) ÓÉr1¼ÆËãO(H1| S1)

ÏȰÑH1µÄÏÈÑé¸ÅÂʸüÐÂΪÔÚE1ϵĺóÑé¸ÅÂÊP(H1| E1) P(H1| E1)=(LS1 ¡Á P(H1)) / ((LS1-1) ¡Á P(H1)+1) =(2 ¡Á 0.091) / ((2 -1) ¡Á 0.091 +1) =0.16682

ÓÉÓÚP(E1|S1)=0.84 > P(E1)£¬Ê¹ÓÃP(H | S)¹«Ê½µÄºó°ë²¿·Ö£¬µÃµ½ÔÚµ±Ç°¹Û²ìS1ϵĺóÑé¸ÅÂÊP(H1| S1)ºÍºóÑ鼸ÂÊO(H1| S1)

P(H1| S1) = P(H1) + ((P(H1| E1) ¨C P(H1)) / (1 - P(E1))) ¡Á (P(E1| S1) ¨C P(E1)) = 0.091 + (0.16682 ¨C0.091) / (1 ¨C 0.6)) ¡Á (0.84 ¨C 0.6) =0.091 + 0.18955 ¡Á 0.24 = 0.136492 O(H1| S1) = P(H1| S1) / (1 - P(H1| S1)) = 0.15807 (2) ÓÉr2¼ÆËãO(H1| S2)

ÏȰÑH1µÄÏÈÑé¸ÅÂʸüÐÂΪÔÚE2ϵĺóÑé¸ÅÂÊP(H1| E2) P(H1| E2)=(LS2 ¡Á P(H1)) / ((LS2-1) ¡Á P(H1)+1)

28

=(100 ¡Á 0.091) / ((100 -1) ¡Á 0.091 +1) =0.90918

ÓÉÓÚP(E2|S2)=0.68 > P(E2)£¬Ê¹ÓÃP(H | S)¹«Ê½µÄºó°ë²¿·Ö£¬µÃµ½ÔÚµ±Ç°¹Û²ìS2ϵĺóÑé¸ÅÂÊP(H1| S2)ºÍºóÑ鼸ÂÊO(H1| S2)

P(H1| S2) = P(H1) + ((P(H1| E2) ¨C P(H1)) / (1 - P(E2))) ¡Á (P(E2| S2) ¨C P(E2)) = 0.091 + (0.90918 ¨C0.091) / (1 ¨C 0.6)) ¡Á (0.68 ¨C 0.6) =0.25464

O(H1| S2) = P(H1| S2) / (1 - P(H1| S2)) =0.34163

(3) ¼ÆËãO(H1| S1,S2)ºÍP(H1| S1,S2) ÏȽ«H1µÄÏÈÑé¸ÅÂÊת»»ÎªÏÈÑ鼸ÂÊ

O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011

ÔÙ¸ù¾ÝºÏ³É¹«Ê½¼ÆËãH1µÄºóÑ鼸ÂÊ

O(H1| S1,S2)= (O(H1| S1) / O(H1)) ¡Á (O(H1| S2) / O(H1)) ¡Á O(H1) = (0.15807 / 0.10011) ¡Á (0.34163) / 0.10011) ¡Á 0.10011 = 0.53942 ÔÙ½«¸ÃºóÑ鼸ÂÊת»»ÎªºóÑé¸ÅÂÊ

P(H1| S1,S2) = O(H1| S1,S2) / (1+ O(H1| S1,S2)) = 0.35040 (4) ÓÉr3¼ÆËãO(H2| S3)

ÏȰÑH2µÄÏÈÑé¸ÅÂʸüÐÂΪÔÚE3ϵĺóÑé¸ÅÂÊP(H2| E3) P(H2| E3)=(LS3 ¡Á P(H2)) / ((LS3-1) ¡Á P(H2)+1) =(200 ¡Á 0.01) / ((200 -1) ¡Á 0.01 +1) =0.09569

ÓÉÓÚP(E3|S3)=0.36 < P(E3)£¬Ê¹ÓÃP(H | S)¹«Ê½µÄǰ°ë²¿·Ö£¬µÃµ½ÔÚµ±Ç°¹Û²ìS3ϵĺóÑé¸ÅÂÊP(H2| S3)ºÍºóÑ鼸ÂÊO(H2| S3)

P(H2| S3) = P(H2 | ? E3) + (P(H2) ¨C P(H2| ?E3)) / P(E3)) ¡Á P(E3| S3) Óɵ±E3¿Ï¶¨²»´æÔÚʱÓÐ

P(H2 | ? E3) = LN3 ¡Á P(H2) / ((LN3-1) ¡Á P(H2) +1) = 0.001 ¡Á 0.01 / ((0.001 - 1) ¡Á 0.01 + 1) = 0.00001 Òò´ËÓÐ

P(H2| S3) = P(H2 | ? E3) + (P(H2) ¨C P(H2| ?E3)) / P(E3)) ¡Á P(E3| S3) =0.00001+((0.01-0.00001) / 0.6) ¡Á 0.36 =0.00600

O(H2| S3) = P(H2| S3) / (1 - P(H2| S3))

=0.00604

(5) ÓÉr4¼ÆËãO(H2| H1)

ÏȰÑH2µÄÏÈÑé¸ÅÂʸüÐÂΪÔÚH1ϵĺóÑé¸ÅÂÊP(H2| H1) P(H2| H1)=(LS4 ¡Á P(H2)) / ((LS4-1) ¡Á P(H2)+1)

29

=(50 ¡Á 0.01) / ((50 -1) ¡Á 0.01 +1) =0.33557

ÓÉÓÚP(H1| S1,S2)=0.35040 > P(H1)£¬Ê¹ÓÃP(H | S)¹«Ê½µÄºó°ë²¿·Ö£¬µÃµ½ÔÚµ±Ç°¹Û²ìS1,S2ÏÂH2µÄºóÑé¸ÅÂÊP(H2| S1,S2)ºÍºóÑ鼸ÂÊO(H2| S1,S2)

P(H2| S1,S2) = P(H2) + ((P(H2| H1) ¨C P(H2)) / (1 - P(H1))) ¡Á (P(H1| S1,S2) ¨C P(H1)) = 0.01 + (0.33557 ¨C0.01) / (1 ¨C 0.091)) ¡Á (0.35040 ¨C 0.091) =0.10291

O(H2| S1,S2) = P(H2| S1, S2) / (1 - P(H2| S1, S2)) =0.10291/ (1 - 0.10291) = 0.11472 (6) ¼ÆËãO(H2| S1,S2,S3)ºÍP(H2| S1,S2,S3) ÏȽ«H2µÄÏÈÑé¸ÅÂÊת»»ÎªÏÈÑ鼸ÂÊ

O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010

ÔÙ¸ù¾ÝºÏ³É¹«Ê½¼ÆËãH1µÄºóÑ鼸ÂÊ

O(H2| S1,S2,S3)= (O(H2| S1,S2) / O(H2)) ¡Á (O(H2| S3) / O(H2)) ¡ÁO(H2) = (0.11472 / 0.01010) ¡Á (0.00604) / 0.01010) ¡Á 0.01010 =0.06832 ÔÙ½«¸ÃºóÑ鼸ÂÊת»»ÎªºóÑé¸ÅÂÊ

P(H2| S1,S2,S3) = O(H1| S1,S2,S3) / (1+ O(H1| S1,S2,S3)) = 0.06832 / (1+ 0.06832) = 0.06395

¿É¼û£¬H2Ô­À´µÄ¸ÅÂÊÊÇ0.01£¬¾­¹ýÉÏÊöÍÆÀíºóµÃµ½µÄºóÑé¸ÅÂÊÊÇ0.06395£¬ËüÏ൱ÓÚÏÈÑé¸ÅÂʵÄ6±¶¶à¡£

6.11ÉèÓÐÈçÏÂÍÆÀí¹æÔò

r1: IF E1 THEN (100, 0.1) H1 r2: IF E2 THEN (50, 0.5) H2 r3: IF E3 THEN (5, 0.05) H3

ÇÒÒÑÖªP(H1)=0.02, P(H2)=0.2, P(H3)=0.4£¬Çë¼ÆËãµ±Ö¤¾ÝE1£¬E2£¬E3´æÔÚ»ò²»´æÔÚʱP(Hi | Ei)»òP(Hi |¦èEi)µÄÖµ¸÷ÊǶàÉÙ(i=1, 2, 3)£¿

½â£º(1) µ±E1¡¢E2¡¢E3¿Ï¶¨´æÔÚʱ£¬¸ù¾Ýr1¡¢r2¡¢r3ÓÐ

P(H1 | E1) = (LS1 ¡Á P(H1)) / ((LS1-1) ¡Á P(H1)+1)

= (100 ¡Á 0.02) / ((100 -1) ¡Á 0.02 +1) =0.671

P(H2 | E2) = (LS2 ¡Á P(H2)) / ((LS2-1) ¡Á P(H2)+1)

= (50 ¡Á 0.2) / ((50 -1) ¡Á 0.2 +1)

=0.9921

P(H3 | E3) = (LS3 ¡Á P(H3)) / ((LS3-1) ¡Á P(H3)+1)

= (5 ¡Á 0.4) / ((5 -1) ¡Á 0.4 +1)

=0.769

(2) µ±E1¡¢E2¡¢E3¿Ï¶¨´æÔÚʱ£¬¸ù¾Ýr1¡¢r2¡¢r3ÓÐ

P(H1 | ?E1) = (LN1 ¡Á P(H1)) / ((LN1-1) ¡Á P(H1)+1)

= (0.1 ¡Á 0.02) / ((0.1 -1) ¡Á 0.02 +1)

30

=0.002

P(H2 | ?E2) = (LN2 ¡Á P(H2)) / ((LN2-1) ¡Á P(H2)+1)

= (0.5 ¡Á 0.2) / ((0.5 -1) ¡Á 0.2 +1) =0.111

P(H3 | ?E3) = (LN3 ¡Á P(H3)) / ((LN3-1) ¡Á P(H3)+1)

= (0.05 ¡Á 0.4) / ((0.05 -1) ¡Á 0.4 +1) =0.032

6.13 ÉèÓÐÈçÏÂÒ»×éÍÆÀí¹æÔò:

r1: IF E1 AND E2 THEN A={a} (CF={0.9})

r2: IF E2 AND (E3 OR E4) THEN B={b1, b2} (CF={0.8, 0.7}) r3: IF A THEN H={h1, h2, h3} (CF={0.6, 0.5, 0.4}) r4: IF B THEN H={h1, h2, h3} (CF={0.3, 0.2, 0.1}) ÇÒÒÑÖª³õʼ֤¾ÝµÄÈ·¶¨ÐÔ·Ö±ðΪ£º

CER(E1)=0.6, CER(E2)=0.7, CER(E3)=0.8, CER(E4)=0.9¡£

¼ÙÉè|¦¸|=10£¬ÇóCER(H)¡£ ½â£ºÆäÍÆÀí¹ý³Ì²Î¿¼Àý6.9 ¾ßÌå¹ý³ÌÂÔ

6.15 Éè

U=V={1£¬2£¬3£¬4}

ÇÒÓÐÈçÏÂÍÆÀí¹æÔò£º

IF x is ÉÙ THEN y is ¶à ÆäÖУ¬¡°ÉÙ¡±Óë¡°¶à¡±·Ö±ðÊÇUÓëVÉϵÄÄ£ºý¼¯£¬Éè ÉÙ=0.9/1+0.7/2+0.4/3 ¶à=0.3/2+0.7/3+0.9/4 ÒÑÖªÊÂʵΪ

x is ½ÏÉÙ ¡°½ÏÉÙ¡±µÄÄ£ºý¼¯Îª

½ÏÉÙ=0.8/1+0.5/2+0.2/3 ÇëÓÃÄ£ºý¹ØÏµRmÇó³öÄ£ºý½áÂÛ¡£ ½â£ºÏÈÓÃÄ£ºý¹ØÏµRmÇó³ö¹æÔò IF x is ÉÙ THEN y is ¶à Ëù°üº¬µÄÄ£ºý¹ØÏµRm

Rm (1,1)=(0.9¡Ä0)¡Å(1-0.9)=0.1 Rm (1,2)=(0.9¡Ä0.3)¡Å(1-0.9)=0.3 Rm (1,3)=(0.9¡Ä0.7)¡Å(1-0.9)=0.7 Rm (1,4)=(0.9¡Ä0.9)¡Å(1-0.9)=0.7 Rm (2,1)=(0.7¡Ä0)¡Å(1-0.7)=0.3 Rm (2,2)=(0.7¡Ä0.3)¡Å(1-0.7)=0.3

31

Rm (2,3)=(0.7¡Ä0.7)¡Å(1-0.7)=0.7 Rm (2,4)=(0.7¡Ä0.9)¡Å(1-0.7)=0.7 Rm (3,1)=(0.4¡Ä0)¡Å(1-0.4)=0.6 Rm (3,2)=(0.4¡Ä0.3)¡Å(1-0.4)=0.6 Rm (3,3)=(0.4¡Ä0.7)¡Å(1-0.4)=0.6 Rm (3,4)=(0.4¡Ä0.9)¡Å(1-0.4)=0.6 Rm (4,1)=(0¡Ä0)¡Å(1-0)=1 Rm (4,2)=(0¡Ä0.3)¡Å(1-0)=1 Rm (4,3)=(0¡Ä0.7)¡Å(1-0)=1 Rm (3,4)=(0¡Ä0.9)¡Å(1-0)=1 ¼´£º

?0.10.30.70.9??0.30.30.70.7?? Rm???0.60.60.60.6???111??1Òò´ËÓÐ

Y'??0.8,0.5,0.2,0??0.10.30.70.9??0.30.30.70.7????0.60.60.60.6? ??111??1??0.3,0.3.0.7,0.8?¼´£¬Ä£ºý½áÂÛΪ

Y¡¯={0.3, 0.3, 0.7, 0.8}

6.16 Éè

U=V=W={1,2,3,4} ÇÒÉèÓÐÈçϹæÔò£º

r1£ºIF x is F THEN y is G r2£ºIF y is G THEN z is H r3£ºIF x is F THEN z is H ÆäÖУ¬F¡¢G¡¢HµÄÄ£ºý¼¯·Ö±ðΪ£º F=1/1+0.8/2+0.5/3+0.4/4 G=0.1/2+0.2/3+0.4/4 H=0.2/2+0.5/3+0.8/4

Çë·Ö±ð¶Ô¸÷ÖÖÄ£ºý¹ØÏµÑéÖ¤Âú×ãÄ£ºýÈý¶ÎÂÛµÄÇé¿ö¡£

½â£º±¾ÌâµÄ½âÌâ˼·ÊÇ£º

ÓÉÄ£ºý¼¯FºÍGÇó³ör1Ëù±íʾµÄÄ£ºý¹ØÏµR1m, R1c, R1g

32

ÔÙÓÉÄ£ºý¼¯GºÍHÇó³ör2Ëù±íʾµÄÄ£ºý¹ØÏµR2m, R2c, R2g ÔÙÓÉÄ£ºý¼¯FºÍHÇó³ör3Ëù±íʾµÄÄ£ºý¹ØÏµR3m, R3c, R3g È»ºóÔÙ½«R1m, R1c, R1g·Ö±ðÓëR2m, R2c, R2gºÏ³ÉµÃR12 m, R12c, R12g ×îºó½«R12 m, R12c, R12g·Ö±ðÓëR3m, R3c, R3g±È½Ï

µÚ7ÕÂ

7-6 ÉèѵÁ·Àý×Ó¼¯ÈçϱíËùʾ£º

ÐòºÅ 1 2 3 4 5 6 ÊôÐÔ x1 T T T F F F x2 T T F F T T ·ÖÀà + + - + _ _ »úÆ÷ѧϰ²Î¿¼´ð°¸

ÇëÓÃID3Ëã·¨Íê³ÉÆäѧϰ¹ý³Ì¡£

½â£ºÉè¸ù½ÚµãΪS£¬¾¡¹ÜËü°üº¬ÁËËùÓеÄѵÁ·Àý×Ó£¬µ«È´Ã»Óаüº¬ÈκηÖÀàÐÅÏ¢£¬Òò´Ë¾ßÓÐ×î´óµÄÐÅÏ¢ìØ¡£¼´£º

H(S)= - (P(+)log2 P(+) + P(-)log2 P(-))

ʽÖÐ

P(+)=3/6£¬P(-)=3/6

·Ö±ðÊǾö²ß·½°¸Îª¡°+¡±»ò¡°-¡±Ê±µÄ¸ÅÂÊ¡£Òò´ËÓÐ

H(S)= - ((3/6)log2(3/6) + (3/6)log2(3/6)) =1

°´ÕÕID3Ëã·¨£¬ÐèҪѡÔñÒ»¸öÄÜʹSµÄÆÚÍûìØÎª×îСµÄÒ»¸öÊôÐÔ¶Ô¸ù½Úµã½øÐÐÀ©Õ¹£¬Òò´ËÎÒÃÇÐèÒªÏȼÆËãS¹ØÓÚÿ¸öÊôÐÔµÄÌõ¼þìØ£º

H(S|xi)= ( |ST| / |S|)* H(ST) + ( |SF| / |S|)* H(SF)

ÆäÖУ¬TºÍFΪÊôÐÔxiµÄÊôÐÔÖµ£¬STºÍSF·Ö±ðΪxi=T»òxi=FʱµÄÀý×Ó¼¯£¬|S|¡¢| ST|ºÍ|SF|·Ö±ðΪÀý×Ó¼¯S¡¢STºÍSF µÄ´óС¡£

ÏÂÃæÏȼÆËãS¹ØÓÚÊôÐÔx1µÄÌõ¼þìØ£º ÔÚ±¾ÌâÖУ¬µ±x1=Tʱ£¬ÓУº ST={1£¬2£¬3} µ±x1=Fʱ£¬ÓУº

SF={4£¬5£¬6}

ÆäÖУ¬ST ºÍSFÖеÄÊý×Ö¾ùΪÀý×Ó¼¯SÖеĸ÷¸öÀý×ÓµÄÐòºÅ£¬ÇÒÓÐ|S|=6£¬| ST |=| SF |=3¡£

33

ÓÉST¿ÉÖª£¬Æä¾ö²ß·½°¸Îª¡°+¡±»ò¡°-¡±µÄ¸ÅÂÊ·Ö±ðÊÇ£º PST(+)=2/3

PST (-)=1/3

Òò´ËÓУº

H(ST)= - (PST (+)log2 PST (+) + PST (-)log2 PST (- ))

= - ((2/3)log2(2/3) + (1/3)log2(1/3)) =0.9183

ÔÙÓÉSF¿ÉÖª£¬Æä¾ö²ß·½°¸Îª¡°+¡±»ò¡°-¡±µÄ¸ÅÂÊ·Ö±ðÊÇ£º PSF (+)=1/3

PSF (-)=2/3

ÔòÓУº

H (SF)= - (PSF (+)log2 PSF (+) + PSF (-)log2 PSF (- ))

= - ((1/3)log2(1/3)+ (2/3)log2(2/3)) =0.9183

½«H(ST)ºÍH (SF)´úÈëÌõ¼þìØ¹«Ê½£¬ÓУº

H(S|x1)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF) =(3/6)©~0.9183 + (3/6)©~0.9183

=0.9183

ÏÂÃæÔÙ¼ÆËãS¹ØÓÚÊôÐÔx2µÄÌõ¼þìØ£º ÔÚ±¾ÌâÖУ¬µ±x2=Tʱ£¬ÓУº ST={1£¬2£¬5£¬6} µ±x2=Fʱ£¬ÓУº

SF={3£¬4}

ÆäÖУ¬ST ºÍSFÖеÄÊý×Ö¾ùΪÀý×Ó¼¯SÖеĸ÷¸öÀý×ÓµÄÐòºÅ£¬ÇÒÓÐ|S|=6£¬| ST |=4£¬| SF |=2¡£

ÓÉST¿ÉÖª£º PST (+) = 2/4

P ST (-) = 2/4

ÔòÓУº

H(ST)= - (P ST (+)log2 P ST (+) + P ST (-)log2 P ST (- ))

= - ((2/4)log2(2/4) + (2/4)log2(2/4)) =1

ÔÙÓÉSF¿ÉÖª£º P SF (+)=1/2

P SF (-)=1/2

ÔòÓУº

H(SF)= - (P(+)log2 P(+) + P(-)log2 P(- ))

= - ((1/2)log2(1/2)+ (1/2)log2(1/2)) =1

½«H(ST)ºÍH (SF)´úÈëÌõ¼þìØ¹«Ê½£¬ÓУº

H(S|x2)=(|ST|/|S|)H(ST)+ (|SF|/|S|)H(SF)

34

=(4/6)©~1 + (2/6)©~1

=1

¿É¼û£¬Ó¦¸ÃÑ¡ÔñÊôÐÔx1¶Ô¸ù½Úµã½øÐÐÀ©Õ¹¡£ÓÃx1¶ÔSÀ©Õ¹ºóËùµÃµ½µÄ²¿·Ö¾ö²ßÊ÷ÈçÏÂͼËùʾ¡£

x1=T (+,+,-) S x1=F (+,-,-) À©Õ¹x1ºóµÄ²¿·Ö¾ö²ßÊ÷

Ôڸþö²ßÊ÷ÖУ¬Æä2¸öÒ¶½Úµã¾ù²»ÊÇ×îÖÕ¾ö²ß·½°¸£¬Òò´Ë»¹ÐèÒª¼ÌÐøÀ©Õ¹¡£¶øÒª¼ÌÐøÀ©Õ¹£¬Ö»ÓÐÊôÐÔx2¿ÉÑ¡Ôñ£¬Òò´Ë²»ÐèÒªÔÙ½øÐÐÌõ¼þìØµÄ¼ÆË㣬¿ÉÖ±½Ó¶ÔÊôÐÔx2½øÐÐÀ©Õ¹¡£

¶Ôx2À©Õ¹ºóËùµÃµ½µÄ¾ö²ßÊ÷ÈçÏÂͼËùʾ£º

x1=T (+,+,-) x2=T (+,+) S x2=F (+,-,-) x2=F x2=T (-) (-,-) x2=F (+)

7-9¼ÙÉèw1(0)=0.2, w2(0)=0.4, ¦È(0)=0.3, ¦Ç=0.4£¬ÇëÓõ¥²ã¸ÐÖªÆ÷Íê³ÉÂß¼­»òÔËËãµÄѧϰ¹ý³Ì¡£ ½â£º¸ù¾Ý¡°»ò¡±ÔËËãµÄÂß¼­¹ØÏµ£¬¿É½«ÎÊÌâת»»Îª£º ÊäÈëÏòÁ¿£ºX1=[0, 0, 1, 1] X2=[0, 1, 0, 1] Êä³öÏòÁ¿£ºY=[0, 1, 1, 1]

ÓÉÌâÒâ¿ÉÖª£¬³õʼÁ¬½ÓȨֵ¡¢ãÐÖµ£¬ÒÔ¼°ÔöÒæÒò×ÓµÄȡֵ·Ö±ðΪ£º w1(0)=0.2, w2(0)=0.4, ¦È(0)=0.3£¬¦Ç=0.4

¼´ÆäÊäÈëÏòÁ¿X(0)ºÍÁ¬½ÓȨֵÏòÁ¿W(0)¿É·Ö±ð±íʾΪ£º X(0)=(-1, x1 (0), x2 (0))

W(0)=(¦È(0), w1(0), w2 (0))

¸ù¾Ýµ¥²ã¸ÐÖªÆðѧϰËã·¨£¬Æäѧϰ¹ý³ÌÈçÏ£º

Éè¸ÐÖªÆ÷µÄÁ½¸öÊäÈëΪx1(0)=0ºÍx2(0)=0£¬ÆäÆÚÍûÊä³öΪd(0)=0£¬Êµ¼ÊÊä³öΪ£º

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-¦È(0)) =f(0.2*0+0.4*0-0.3)=f(-0.3)=0 ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(0)=0ºÍx2(0)=1£¬ÆäÆÚÍûÊä³öΪd(0)=1£¬Êµ¼ÊÊä³öΪ£º

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-¦È(0)) =f(0.2*0+0.4*1-0.3)=f(0.1)=1

35

À©Õ¹x2ºóµÃµ½µÄÍêÕû¾ö²ßÊ÷

ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(0)=1ºÍx2(0)=0£¬ÆäÆÚÍûÊä³öΪd(0)=1£¬Êµ¼ÊÊä³öΪ£º

y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-¦È(0)) =f(0.2*1+0.4*0-0.3)

=f(-0.1)=0

ʵ¼ÊÊä³öÓëÆÚÍûÊä³ö²»Í¬£¬ÐèÒªµ÷½ÚȨֵ£¬Æäµ÷ÕûÈçÏ£º

¦È(1)=¦È(0)+¦Ç(d(0)- y(0))*(-1)=0.3+0.4*(1-0)*(-1)= -0.1 w1(1)=w1(0)+¦Ç(d(0)- y(0))x1(0)=0.2+0.4*(1-0)*1=0.6 w2(1)=w2(0)+¦Ç(d(0)- y(0))x2(0)=0.4+0.4*(1-0)*0=0.4

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(1)=1ºÍx2(1)=1£¬ÆäÆÚÍûÊä³öΪd(1)=1£¬Êµ¼ÊÊä³öΪ£º

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-¦È(1)) =f(0.6*1+0.4*1+0.1)

=f(1.1)=1

ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(1)=0ºÍx2(1)=0£¬ÆäÆÚÍûÊä³öΪd(0)=0£¬Êµ¼ÊÊä³öΪ£º

y(1)=f(w1(1) x1(1)+ w2(1) x2(1)-¦È(1)) =f(0.6*0+0.4*0 + 0.1)=f(0.1)=1 ʵ¼ÊÊä³öÓëÆÚÍûÊä³ö²»Í¬£¬ÐèÒªµ÷½ÚȨֵ£¬Æäµ÷ÕûÈçÏ£º

¦È(2)=¦È(1)+¦Ç(d(1)- y(1))*(-1)= -0.1+0.4*(0-1)*(-1)= 0.3 w1(2)=w1(1)+¦Ç(d(1)- y(1))x1(1)=0.6+0.4*(0-1)*0=0.6 w2(2)=w2(1)+¦Ç(d(1)- y(1))x2(1)=0.4+0.4*(0-1)*0=0.4

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(2)=0ºÍx2(2)=1£¬ÆäÆÚÍûÊä³öΪd(2)=1£¬Êµ¼ÊÊä³öΪ£º

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-¦È(2)) =f(0.6*0+0.4*1 - 0.3)=f(0.1)=1 ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(2)=1ºÍx2(2)=0£¬ÆäÆÚÍûÊä³öΪd(2)=1£¬Êµ¼ÊÊä³öΪ£º

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-¦È(2)) =f(0.6*1+0.4*0 - 0.3)=f(0.3)=1 ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÔÙÈ¡ÏÂÒ»×éÊäÈ룺x1(2)=1ºÍx2(2)=1£¬ÆäÆÚÍûÊä³öΪd(2)=1£¬Êµ¼ÊÊä³öΪ£º

y(2)=f(w1(2) x1(2)+ w2(2) x2(2)-¦È(2)) =f(0.6*1+0.4*1 - 0.3)=f(0.7)=1 ʵ¼ÊÊä³öÓëÆÚÍûÊä³öÏàͬ£¬²»ÐèÒªµ÷½ÚȨֵ¡£

ÖÁ´Ë£¬Ñ§Ï°¹ý³Ì½áÊø¡£×îºóµÄµÃµ½µÄãÐÖµºÍÁ¬½ÓȨֵ·Ö±ðΪ£º

¦È(2)= 0.3 w1(2)=0.6 w2(2)= 0.4 ²»·ÂÑéÖ¤ÈçÏ£º

¶ÔÊäÈ룺¡°0 0¡±ÓÐy=f(0.6*0+0.4*0-0.3)=f(-0.3)=0 ¶ÔÊäÈ룺¡°0 1¡±ÓÐy=f(0.6*0+0.4*1-0.3)=f(0.1)=1

36

¶ÔÊäÈ룺¡°1 0¡±ÓÐy=f(0.6*1+0.4*0-0.3)=f(0.3)=1 ¶ÔÊäÈ룺¡°1 1¡±ÓÐy=f(0.6*1+0.4*1-0.3)=f(0.7)=1

Íê1.½«ÏÂÁÐ×ÔÈ»ÓïÑÔת»¯ÎªÎ½´Ê±íʾÐÎʽ£º (1) ËùÓеÄÈ˶¼ÊÇÒªºôÎüµÄ¡£ (2) ÿ¸öѧÉú¶¼Òª²Î¼Ó¿¼ÊÔ¡£ (3) ÈκÎÕûÊý»òÊÇÕýµÄ»òÊǸºµÄ¡£ 2.ºÎν¡°Í¼ÁéʵÑ顱£¿¼òµ¥ÃèÊöÖ®

3.д³öͼÖÐÊ÷µÄ½áµãÁ½¸ö·ÃÎÊÐòÁУ¬ÒªÇó·Ö±ðÂú×ãÒÔÏÂÁ½¸öËÑË÷²ßÂÔ£º

(1) Éî¶ÈÓÅÏÈËÑË÷ (2) ¹ã¶ÈÓÅÏÈËÑË÷

4.ÊÔʵÏÖÒ»¸ö¡°´óѧ½Ìʦ¡±µÄ¿ò¼Ü£¬´óѧ½ÌʦÀàÊôÓÚ½Ìʦ£¬°üÀ¨ÒÔÏÂÊôÐÔ£ºÑ§Àú£¨Ñ§Ê¿¡¢Ë¶Ê¿¡¢²©Ê¿£©¡¢×¨Òµ£¨¼ÆËã»ú¡¢µç×Ó¡¢×Ô¶¯»¯¡¢¡­¡­£©¡¢Ö°³Æ£¨Öú½Ì¡¢½²Ê¦¡¢¸±½ÌÊÚ¡¢½ÌÊÚ£© 5.ÓÃν´ÊÂß¼­ÐÎʽ»¯ÏÂÁÐÃèÊö

¡°²»´æÔÚ×î´óµÄÕûÊý¡± 6.ÓÃÓïÒåÍøÂç±íʾ¡°Æ»¹û¡±ÖªÊ¶¡£

7. ʲôÊDzúÉúʽ£¿²úÉúʽ¹æÔòµÄÓïÒåÊÇʲô£¿

8. ν´Ê¹«Ê½Gͨ¹ý£¸¸ö²½ÖèËùµÃµÄ×Ӿ伯ºÏS£¬³ÆÎªGµÄ×Ӿ伯¡£Çëд³öÕâЩ²½Öè¡£9.£¨1£©ÒÑÖªS={P(f(x),y,g(y)),P(f(x),z,g(x))}£¬ÇóMGU

£¨2£©ÒÑÖªW={P(f(x,g(A,y)),z),P(f(x,z),z)}£¬ÇóMGU 10.£¨1£© Ö¤Ã÷GÊÇ·ñÊÇFµÄÂß¼­½áÂÛ£»

5 2 6 3 4 1 7 8 13 9 10 11 12 F:?x(P(x)?Q(a)?Q(x))

G:?x(P(x)?Q(x))£¨2£©Ö¤Ã÷GÊÇ·ñÊÇF1¡¢F2µÄÂß¼­½áÂÛ£»

F1£º?x(P(x)?(Q(x)?R(x))F2£º?x(P(x)?S(x))G£º?x(S(x)?R(x))11. 1¡¢ÓÃÓïÒåÍøÂç±íʾÏÂÁÐÐÅÏ¢£º

(1)ºú;ÊÇ˼Դ¹«Ë¾µÄ¾­Àí£¬Ëû35Ë꣬סÔÚ·ÉÌìºúͬ68ºÅ

(2)Ç廪´óѧÓë±±¾©´óѧ½øÐÐÀ¶Çò±ÈÈü£¬×îºóÒÔ89£º102µÄ±È·Ö½áÊø¡£ £¨3£©½«ÃüÌ⣺¡°Ä³¸öѧÉú¶Á¹ýÈý¹úÑÝÒ塱·Ö±ðÓÃν´Ê¹«Ê½ºÍÓïÒåÍøÂç±íʾ £¨4£©°ÑÓï¾ä¡°Ã¿¸öѧÉú¶¼Ï²»¶ÀÏʦÉϵÄÒ»ÃſΡ£¡±±íʾΪÓïÒåÍøÂç¡£

37

£¨5£©Çë°ÑÏÂÁÐÃüÌâ±íʾµÄÊÂʵÓÃÒ»¸öÓïÒåÍøÂç±íʾ³öÀ´¡£ 1)Ê÷ºÍ²Ý¶¼ÊÇÖ²Î 2)Ê÷ºÍ²Ý¶¼ÊÇÓиùÓÐÒ¶µÄ£» 3)Ë®²ÝÊDzݣ¬ÇÒ³¤ÔÚË®ÖУ» 4)¹ûÊ÷ÊÇÊ÷£¬ÇÒ»á½á¹û£» 5)Ó£ÌÒÊ÷ÊÇÒ»ÖÖ¹ûÊ÷£¬Ëü½áÓ£ÌÒ¡£ £¨6£©ÓÃÓïÒåÍøÂç±íʾÏÂÁÐÊÂʵ

Ò¦Ã÷ÊÇһλÄê½ü°ë°ÙµÄÄнÌʦ£¬ÖеÈÉí²Ä£¬ËûÔÚ±¾Ñ§ÄêµÚ¶þѧÆÚ¸ø¼ÆËã»úרҵѧÉú½²ÊÚ¡°È˹¤ÖÇÄÜ¡±¿Î³Ì¡£¸Ã¿Î³ÌÊÇÒ»ÃÅÑ¡Ð޿Σ¬±È½ÏÄÑ¡£

13. ͼʾ²©ÞÄÊ÷£¬ÆäÖÐĩһÐеÄÊý×ÖΪ¼ÙÉèµÄ¹ÀÖµ£¬ÇëÀûÓæÁ-¦Â¼ôÖ¦¼¼Êõ¼ôÈ¥²»±ØÒªµÄ·ÖÖ¦¡££¨Ôڽڵ㼰±ßÉÏÖ±½Ó¼Ó×¢ÊÍ£©

14. ÉèÓÐÈçϹØÏµ£º£¨1£©Èç¹ûxÊÇyµÄ¸¸Ç×£¬yÓÖÊÇzµÄ¸¸Ç×£¬ÔòxÊÇzµÄ׿¸¸£» £¨2£©ÀÏÀîÊÇ´óÀîµÄ¸¸Ç×£»£¨3£©´óÀîÊÇСÀîµÄ¸¸Ç×£»ÎÊÉÏÊöÈËÔ±ÖÐË­ºÍË­ÊÇ׿Ëï¹ØÏµ£¿ 15½âÊÍÏÂÁÐÄ£ºýÐÔ֪ʶ£º 1) ÕÅÈý£¬ÌåÐÍ£¬£¨ÅÖ£¬0.9£©£©¡£

2) (»¼Õߣ¬Ö¢×´£¬(Í·ÌÛ£¬0.95) )¡Ä (»¼Õߣ¬Ö¢×´£¬(·¢ÉÕ£¬1.1) ) ¡ú(»¼Õߣ¬¼²²¡£¬(¸Ðð£¬1.2) ) 16. ¼òµ¥²ûÊö²úÉúʽϵͳµÄ×é³É¡£

17. ÊÔÓÃÏßÐÔÏû½â²ßÂÔÖ¤Ã÷£º×Ӿ伯S={ P¡ÅQ, ¦èP¡ÅR, ¦èQ¡ÅR, ¦èR }ÊÇ¿ÉÏû½âµÄ¡£ 18¹ã¶ÈÓÅÏÈËÑË÷ÓëÉî¶ÈÓÅÏÈËÑË÷¸÷ÓÐÊ²Ã´ÌØµã£¿ 19.ÓïÒåÍøÂç¿ÉÒÔ±í´ïÊÂÎïÖ®¼äµÄÄÄЩ¹ØÏµ£¿

20.¼ÙÉèÒÑÖªÏÂÁÐÊÂʵ£º

£¨1£©³¬ÊУ¨Supermarket£©Âô£¨Sail£©µÄÉÌÆ·(Goods)±ãÒË(Cheap)¡£ £¨2£©Íõ£¨Wang£©Âò£¨Buy£©ÐèÒªµÄ£¨Want£©±ãÒËÉÌÆ·¡£ £¨3£©×ÔÐгµ£¨Bicycle£©ÊÇÉÌÆ·ÇÒ³¬ÊÐÂô×ÔÐгµ¡£ £¨4£©ÍõÐèÒª×ÔÐгµ¡£

£¨5£©ÕÔ£¨Zhao£©¸úËæÍõÂòͬÑùµÄÉÌÆ·¡£

38

ÇëÓ¦Óùé½á·´ÑÝÖ¤Ã÷·½·¨»Ø´ðÒÔÏÂÎÊÌ⣺ £¨1£©ÍõÂò×ÔÐгµÂ𣿠£¨2£©ÕÔÂòʲôÉÌÆ·£¿

21.ÒÑÖªÒ»¸öʹÓÿÉÐŶȷ½·¨µÄÍÆÀíÍøÂçÈçͼËùʾ£¬ÆäÖ¤¾ÝµÄ¿ÉÐŶȾù±êʾÔÚͼÖС£ÍÆÀí¹æÔòµÄ¿ÉÐŶȷֱðΪ£ºA¡ÄB¡úH, 0.7

C¡ÅD¡úH, 0.9

E¡úH, 0.3

ÊÔ°´ÕÕ¿ÉÐŶȷ½·¨µÄÇó½â²½Öè¼ÆËãÿ¸öÖ¤¾Ý½Úµã¶Ô¼ÙÉèHÍÆÀíµÄ¿ÉÐŶȣ¬²¢¾Ý´ËÍÆËãÈ«²¿Ö¤¾Ý£¨¸´ºÏÖ¤¾Ý£©¶ÔÓÚHÍÆÀíµÄ¿ÉÐŶȡ£

H E A 0.3

B 0.5 C D

0.4 0.2 ?0.8 22. Çó×Ó¾äR(x, y)¡Å¦èQ(B, y)¡ÅW(x, f(y)) ºÍR(x, C)¡ÅQ(y, C) µÄ¹é½áʽ¡£ 23. ºÎν¹À¼Ûº¯Êý£¿Æô·¢Ê½Í¼ËÑË÷µÄAËã·¨ºÍA*Ëã·¨×îÏÔÖøµÄÇø±ðÊÇʲô£¿ 24. ʲôÊÇÖû»£¿Öû»Êǿɽ»»»µÄÂð£¿

25. ¸ø1¡«9¾Å¸öÊý×ÖÅÅÒ»¸öÐòÁУ¬Ê¹µÃ¸ÃÐòÁеÄǰn(n=1,...,9) ¸öÊý×Ö×é³ÉµÄÕûÊýÄܱ»nÕû³ý¡£ (1)¡¢ÌÖÂÛÄÄЩ֪ʶ¿ÉÒÔ°ïÖú¸ÃÎÊÌâµÄÇó½â¡£ (2)¡¢ÓòúÉúʽϵͳÃèÊö¸ÃÎÊÌâ. 26. .¦Á£­¦Â¼ôÖ¦µÄÌõ¼þÊÇʲô£¿ 27½«ÏÂÁÐ×ÔÈ»ÓïÑÔת»¯ÎªÎ½´Ê±íʾÐÎʽ£º £¨1£©ËùÓеÄÈ˶¼ÊÇÒªºôÎüµÄ¡£ £¨2£©Ã¿¸öѧÉú¶¼Òª²Î¼Ó¿¼ÊÔ¡£ £¨3£© ÈκÎÕûÊý»òÊÇÕýµÄ»òÊǸºµÄ¡£

28¡¢È˹¤ÖÇÄÜÖ÷ÒªÓÐÄļ¸ÖÖÑо¿Í¾¾¶ºÍ¼¼Êõ·½·¨£¬¼òµ¥ËµÃ÷Ö®¡£ Ò»¡¢ 1¡¢£¨1£©½«ÏÂÁÐν´Ê¹«Ê½»¯³É×Ӿ伯

?x?y??z?P?z??~Q?x,z???R?x,y,f?a???

£¨2£©°ÑÏÂÁÐν´Ê¹«Ê½·Ö±ð»¯³ÉÏàÓ¦µÄ×Ӿ伯£º

x(

yP(x,y)¡ú¡«

y(Q(x,y)¡úR(x,y)))

2.Èôν´Ê¹«Ê½E=P(x,f(y),z),Öû»s1=£ûf(x,y)/z,z/w£ý£¬s2=£ûa/x,b/y,w/z£ý£¬ÇóE£¨s1¡¤s2£©£¬E£¨s2¡¤s1£©¡£ 3.ÓüÓȨͼµÄÆô·¢Ê½ËÑË÷Ëã·¨£¨²»ÄÜÓÃDijkstraËã·¨£©Çó½âÏÂÁÐÎÊÌ⣺ÏÂͼÊÇÒ»¸ö½»Í¨Í¼£¬ÉèAÊdzö·¢µØ£¬EÊÇÄ¿µÄµØ£¬±ßÉϵÄÊý×Ö±íʾÁ½³ÇÊÐÖ®¼äµÄ½»Í¨·Ñ¡£Çó´ÓAµ½E×îС·ÑÓõÄÂÃÐзÏߣ¬»­³öËÑË÷Ê÷£¬»­³öClosed±íºÍOpen±íµÄ±ä»¯¹ý³Ì¡£

B 4 5 E A 4.Óñê×¼Âß¼­£¨¾­µäÂß¼­£¬Î½´ÊÂß¼­£©µÄ×Ӿ伯±íʾÏÂÊöÐÌÕì֪ʶ£¬²¢Ó÷´Ñݹé½âµÄÏßÐÔ²ßÂÔÖ¤Ã÷½áÂÛ

ÏÖ¶¨ÒåÈçÏÂν´Ê£¨ÆäÏî±äÁ¿X£¬Y£¬Z£¬½ÔΪȫ³ÆÁ¿´Ê£©¡£ 3

C 4 39 3 2 D Thief(X)-----ijÈËXÊÇÔô£»

Likes(X,Y)------ijÈËXϲ»¶Ä³ÎïY£»

May-steal(X,Y)------ijÈËX¿ÉÄÜ»á͵ÇÔijÎïY¡£ 5.ÓÃ×Ӿ伯±í´ïÏÂÊöÐÌÕì֪ʶ£º

I. JohnÊÇÔô¡£

II. Paulϲ»¶¾Æ£¨wine£©

III. Paul( Ò²)ϲ»¶ÄÌÀÒ£¨cheese£©

IV. Èç¹ûPaulϲ»¶Ä³ÎïÔòJohn Ҳϲ»¶Ä³Îï¡£

V. Èç¹ûijÈËÊÇÔô£¬¶øÇÒËûϲ»¶Ä³ÎÔòËû¾Í¿ÉÄÜ»á͵ÇÔ¸ÃÎï¡£

6.ÇóÖ¤½áÂÛ:John¿ÉÄÜ»á͵ÇÔÁËʲô£¿¼´Çó֤Ŀ±ê£ºmay-steal(John,Z), Z=?£¨ÒªÇó½«Çó֤Ŀ±ê×÷Ϊ¶¥×Ӿ䣬°´ÏßÐÔ²ßÂÔ½øÐйé½áÍÆÀí£¬×¢Ã÷ÿ´ÎÇó¹é½áʽËù½øÐеÄÖû»¼°Æä¸¸×Ó¾äµÄ±àºÅ£© 7.£¨1£©ÒÑÖªÒ»×鹿ÔòºÍÖ¤¾Ý£¨ÊÂʵ£©£º

R1£ºA1¡úB1,CF£¨B1£¬A1£©=0.8 R2£ºA2¡úB1,CF£¨B1£¬A2£©=0.5

R3£ºB1¡ÄA3->B2£¬CF£¨B2£¬B1¡ÄA3£©=0.8

³õʼ֤¾ÝA1£¬A2£¬A3£¬²¢ÇÒCF(A1)=CF(A2)=CF(A3)=1, ²¢ÇÒ³õʼʱ¶ÔB1£¬B2Ò»ÎÞËùÖª¡£¸ù¾ÝShortliffeµÄÈ·¶¨ÐÔÀíÂÛ£¨¿ÉÐŶȷ½·¨£©£¬ÇóÖ¤¾ÝB1£¬B2µÄ¿ÉÐŶÈÔÚÖ´ÐйæÔòR1£¬R2£¬R3ºóµÄ¸üÐÂÖµCF(B1),CF(B2)¡£ £¨2£©ÒÑÖªÓÐÈçϲ»È·¶¨ÍÆÀí¹æÔò£º r1£ºC11¡ÅC12 T H1 0.7£» r2£ºH1 T H 0.5£» r3£ºC21¡ÄC22 T H £­0.6£» r4£º(C31¡ÄC32)¡ÅC33 T H 0.8£»

CF(C11) = 0.8£¬ CF(C12) = 0.9£¬CF(C21) = 0.3£¬CF(C22) = 0.6£¬ CF(C31) = 0.9£¬CF(C32) = 0.5£¬CF(C33) =0.7£»

ÇëÓ¦ÓÃMYCINµÄÈ·¶¨ÐÔ·½·¨Çó³öCF(H)¡£

8.ÉèÓÐA£¬B£¬CÈýÈËÖÐÓÐÈË´Ó²»ËµÕæ»°£¬Ò²ÓÐÈË´Ó²»Ëµ¼Ù»°£¬Ä³ÈËÏòÕâÈýÈË·Ö±ðÌá³öͬһ¸öÎÊÌ⣺˭ÊÇ˵»ÑÕߣ¿A ´ð£º¡°BºÍC¶¼ÊÇ˵»ÑÕß¡±£»B´ð£º¡°AºÍC¶¼ÊÇ˵»ÑÕß¡±£»C´ð£º¡°AºÍBÖÐÖÁÉÙÓÐÒ»¸öÊÇ˵»ÑÕß¡±¡£ÇóË­ÊÇÀÏʵÈË£¬Ë­ÊÇ˵»ÑÕߣ¿£¨15·Ö£© 9. 1£©ÉèÒÑÖª:

(1)ÄÜÔĶÁÕßÊÇʶ×ÖµÄ; (2)º£ë಻ʶ×Ö; (3)ÓÐЩº£ëàÊÇ´ÏÃ÷µÄ; ÇóÖ¤:ÓÐЩ´ÏÃ÷Õß²¢²»ÄÜÔĶÁ.

2£©ÀûÓÃν´ÊÂß¼­±íʾÏÂÁÐ֪ʶ£¨°üÀ¨ÒÑÖªºÍ½áÂÛ£©£¬È»ºó»¯³É×Ӿ伯£º £¨1£©·²ÊÇÇå½àµÄ¶«Î÷¾ÍÓÐÈËϲ»¶£» £¨2£©ÈËÃǶ¼²»Ï²»¶²ÔÓ¬ ÇóÖ¤£º²ÔÓ¬ÊDz»Çå½àµÄ¡£

10. °ËÊýÂëÓÎÏ·£¬³õʼÆå¾ÖºÍÄ¿±êÆå¾ÖÈçͼ£¬¶¨ÒåÆô·¢º¯Êýh£¨x£©±íʾij״̬ÏÂÓëÄ¿±êÊýÂ벻ͬµÄλÖøöÊý£¬ÓÃÈ«¾ÖÔñÓÅ·¨»­³öËÑË÷µÄ¹ý³Ì¡£

40

³õʼ״̬£º£¬Ä¿±ê״̬£º

11. ÕÅij±»µÁ£¬¹«°²¾ÖÅÉÁËÎå¸öÕì²ìԱȥµ÷²é¡£Ñо¿°¸Çéʱ£¬Õì²ìÔ±£Á˵£º¡°ÕÔÓëÇ®ÖÐÖÁÉÙÓÐÒ»ÈË×÷°¸¡±£»Õì²ìÔ±£Ä˵£º¡°Ç®ÓëËïÖÁÉÙÓÐÒ»ÈË×÷°¸¡±£»Õì²ìÔ±£Ã˵£º¡°ËïÓëÀîÖÐÖÁÉÙÓÐÒ»¸ö×÷°¸¡±£»Õì²ìÔ±£Ä˵¡°ÕÔÓëËïÖÁÉÙÒ»¸öÓë°¸Î޹ء±£»Õì²ìÔ±£Å˵¡°Ç®ÓëÀîÖÐÖÁÉÙÓÐÒ»ÈËÓë´Ë°¸Î޹ء±¡£Èç¹ûÕâÎå¸öÕì²ìÔ±µÄ»°¶¼ÊÇ¿ÉÐŵģ¬ÊÔÓÃÏû½âÔ­ÀíÍÆÀíÇó³öË­ÊǵÁÇÔ·¸¡£

12. ijÆóÒµÓûÕÐÆ¸Ò»¸öJAVA³ÌÐòÔ±£¬¶¨ÒåÈçϲúÉúʽ¹æÔò(ÒªÇó)£º

r1: IFÓй¤×÷¾­Ñé or (±¾¿ÆÒÔÉÏѧÀú and ÓÐÏà¹ØÖªÊ¶±³¾° then ¼Óã¨0.9) r2:IF ¹¤×÷Á½ÄêÒÔÉÏ and ×÷¹ýÏà¹Ø¹¤×÷ then Óй¤×÷¾­Ñé £¨0.8£©

r3:IF ѧ¹ýÊý¾Ý½á¹¹ and ѧ¹ýJAVA and ѧ¹ýÊý¾Ý¿â and ѧ¹ýÈí¼þ¹¤³Ì then ÓÐÏà¹ØÖªÊ¶±³¾°(0.9) r4:ѧ¹ýÊý¾Ý½á¹¹£¨Ïà¹Ø¿Î³ÌµÄ³É¼¨/100 £© r5:ѧ¹ýJAVA£¨Ïà¹Ø¿Î³ÌµÄ³É¼¨/100 £© r6:ѧ¹ýÊý¾Ý¿â£¨Ïà¹Ø¿Î³ÌµÄ³É¼¨/100 £© r7:ѧ¹ýÈí¼þ¹¤³Ì£¨Ïà¹Ø¿Î³ÌµÄ³É¼¨/100 £© r8:×ö¹ýÏà¹Ø¹¤×÷£º

JAVA³ÌÐòÔ±£º1£¬ÏîÄ¿¾­Àí£º1£¬Êý¾Ý¿â¿ª·¢¹¤³Ìʦ£º0.9£¬Êý¾Ý¿â¹ÜÀíÔ±£º0.7,ÍøÂç¹ÜÀíÔ±£º0.6£¬¿Í·þÈËÔ±£º0.4

ÉèÓÐÒ»±¾¿Æ±ÏÒµÉú¼×£¬ÆäÏà¹Ø¿Î³ÌµÄ³É¼¨ÎªÊý¾Ý½á¹¹=85,JAVA=80,Êý¾Ý¿â=40,Èí¼þ¹¤³Ì=90 ÁíÓÐÒ»Éç»áÕÐÆ¸ÈËÔ±ÒÒ£¬²Î¼Ó¹¤×÷ÈýÄê£¬Ôø×ö¹ýÊý¾Ý¿â¹ÜÀíÔ±ºÍÊý¾Ý¿â¿ª·¢ÈËÔ±

¸ù¾ÝÈ·¶¨ÐÔÀíÂÛ£¬Îʸù«Ë¾Ó¦¸ÃÕÐÆ¸Ë­£¿Èç¹ûÄãÊǸñ¾¿ÆÉú£¬ÎªÁËÄÜÔÚÕÐÆ¸ÖÐʤ³ö£¬ÄãÓ¦¸Ã¼ÓÇ¿ÄÄÃſγ̣¬²¢Ê¹¸ÃÃſγ̵ijɼ¨ÖÁÉÙ´ïµ½¶àÉÙ£¿ 13. ijÎÊÌâÓÉÏÂÁй«Ê½ÃèÊö£º

ÊÔÓùé½á·¨Ö¤Ã÷(x)R(x)£»

14. ÏÂͼËùʾ²©ÞÄÊ÷£¬°´´Ó×óµ½ÓÒµÄ˳Ðò½øÐЦÁ-¦Â¼ôÖ¦ËÑË÷£¬ÊÔ±êÃ÷¸÷Éú³É½ÚµãµÄµ½ÍÆÖµ£¬ºÎ´¦·¢Éú¼ôÖ¦£¬¼°

ӦѡÔñµÄ×ß²½¡£10·Ö

41

15.¼ôÖ¦·½·¨Ö»ÊǼ«Ð¡¼«´ó·½·¨µÄÒ»ÖÖ½üËÆ£¬¼ôÖ¦¿ÉÄÜ»áÒÅ©µô×î¼Ñ×ß²½¡£ÕâÖÖ˵·¨ÊÇ·ñÕýÈ·£¿ 1.

ʲôÊÇÈ˹¤ÖÇÄÜ£¿È˹¤ÖÇÄÜÓë¼ÆËã»ú³ÌÐòµÄÇø±ð£¿

´ð£ºAIÊÇÑо¿ÈçºÎÖÆÔìÈËÔìµÄÖÇÄÜ»úÆ÷»òÖÇÄÜϵͳÀ´Ä£ÄâÈËÀàÖÇÄܻµÄÄÜÁ¦ÒÔÑÓÉìÈËÀàÖÇÄܵĿÆÑ§£¬ËüÓë¼ÆËã»ú³ÌÐòµÄÇø±ðÊÇ£º ? ? ? ? 2.

AIÑо¿µÄÊÇ·ûºÅ±íʾµÄ֪ʶ¶ø²»ÊÇÊýÖµÊý¾ÝΪÑо¿¶ÔÏó AI²ÉÓÃÆô·¢Ê½ËÑË÷·½·¨¶ø²»ÊÇÆÕͨµÄËã·¨ ¿ØÖƽṹÓë֪ʶÊÇ·ÖÀëµÄ ÔÊÐí³öÏÖ²»ÕýÈ·µÄ´ð°¸

»¯ÏÂÁÐÂß¼­±í´ïʽΪ²»º¬´æÔÚÁ¿´ÊµÄÇ°Êø·¶Ê½

??X???Y????Z?P?X,Z??R?X,Y,f?a???

´ð£º

??X???Y???Z(P?X,Z??R?X,Y,f?a??)? ??X???Y???Z(~P?X,Z??R?X,Y,f?a??)?

?X?Y?Z?~P?X,Z??R?X,Y,f?a???

?Y?Z?~P?b,Z??R?b,Y,f?a??? ?Y?~P?b,f(Y)??R?b,Y,f?a???

3.

ÇóÏÂÁÐν´Ê¹«Ê½µÄ×Ӿ伯

?x?y((P(x,y)?(Q(x,y)?R(x,y)))

42

´ð£º

?x?y(~(P(x,y)?(Q(x,y)?R(x,y))) ?x?y((~P(x,y)?~(Q(x,y))?R(x,y)))

?x?y((~P(x,y)?R(x,y))?(~Q(x,y)?R(x,y)))

ËùÒÔ×Ӿ伯Ϊ£º {4.

~P(x,y)?R(x,y),~Q(x,y)?R(x,y)}

ÈôÓÐÌÝÐÎABCD£¬½«ÆäÖеÄÈô¸É¶¨ÀíÐÎʽ»¯¼´¶¨ÒåһЩν´Ê¹«Ê½£¬È»ºóÀûÓùé½áÔ­ÀíÖ¤Ã÷ÄÚ´í½Ç

?ABD??CDB

A D B C

Ö¤Ã÷£ºÉèÌÝÐζ¥µãÒÀ´ÎΪa,b,c,d,¶¨Òåν´Ê: T(x,y,u,v):±íʾxyΪÉϵ×,uvΪϵ׵ÄÌÝÐÎ. P(x,y,u,v):±íʾxy||uv

E(x,y,z,u,v,w)±íʾ¡Ïxyz=¡Ïuvw£¬ÎÊÌâµÄÃèÊöºÍÏàÓ¦µÄ×Ӿ伯Ϊ xyuv[T(x,y,u,v)¡úP(x,y,u,v)]...ÌÝÐÎÉÏÏÂµ×Æ½ÐÐ

×Ӿ䣺¡«T(x,y,u,v)¡ÅP(x,y,u,v)

xyuv[P(x,y,u,v)¡úE(x,y,v,u,v,y)]...ƽÐÐÔòÄÚ´í½»ÏàµÈ ×Ӿ䣺

T(a,b,c,d)...ÒÑÖª ×Ӿ䣺T(a,b,c,d)

E(a,b,d,c,d,b)...ÒªÖ¤Ã÷µÄ½áÂÛ ×Ӿ䣺¡«E(a,b,d,c,d,b) ×Ӿ伯SΪ

¡«T(x,y,u,v)¡ÅP(x,y,u,v) ¡«P(x,y,u,v)¡ÅE(x,y,v,u,v,y) T(a,b,c,d) ¡«E(a,b,d,c,d,b) ÏÂÃæÀûÓùé½áÔ­ÀíÖ¤Ã÷ P(a,b,c,d) NIL

£¨1£©ºÍ£¨3£©¹é½á£¬Öû»{a/x,b/y,c/u,d/v}

E(a,b,d,c,d,b) ¸ù¾Ý¹é½áÔ­ÀíµÃÖ¤¡£ 5.

Çó×Ӿ伯S?£¨2£©ºÍ£¨5£©¹é½á£¬Öû»{a/x,b/y,c/u,d/v} £¨4£©ºÍ£¨6£©¹é½á

?P(x,a,f(g(y)),P(z,h(z,u),f(u))?µÄMGU

43

½â£ºk=0;S0=S;¦Ä0=¦Å;S0²»Êǵ¥ÔªËؼ¯£¬ÇóµÃ²îÒ켯D0=£ûa/z£ý,ÆäÖÐzÊDZäÔª£¬aÊÇÏÇÒz²»ÔÚaÖгöÏÖ¡£k=k+1=1

ÓЦÄ1=¦Ä0¡¤£ûa/z£ý=¦Å¡¤£ûa/z£ý=£ûa/z£ý£¬

S1=S0¡¤£ûa/z£ý=£ûP(a,x,f(g(y)),P(a,h(a,u),f(u))),S1²»Êǵ¥ÔªËؼ¯£¬ ÇóµÃ²îÒ켯D1=£ûx,h(a,u)£ý,k=k+1=2;¦Ä2=¦Ä1¡¤£ûh(a,u)/x£ý=£ûa/z,h(a,u)/x£ý, S2=S1¡¤£ûh(a,u)/x£ý=£ûP(a,h(a,u),f(g(y)),P(a,h(a,u),f(u)))£¬ S2²»Êǵ¥ÔªËؼ¯£¬ÇóµÃ²îÒ켯D2=£ûg(y),u£ý,k=k+1=3

¦Ä3=¦Ä2¡¤£ûg(y)/u£ý=£ûa/z,h(a,u)/x£ý¡¤£ûg(y)/u£ý=£ûa/z,h(a,g(y))/x,g(y)/u£ý S3=S2¡¤£ûg(y)/u£ý=£ûP(a,h(a,g(y)),f(g(y)))£ýÊǵ¥ÔªËؼ¯¡£ ¸ù¾ÝÇóMGUËã·¨£¬MGU=¦Ä3=£ûa/z,h(a,g(y))/x,g(y)/u£ý 6.

Óôú¼ÛÓÅÏÈËã·¨Çó½âÏÂͼµÄÂÃÐÐÍÆÏúÔ±ÎÊÌ⣬ÇëÕÒÒ»Ìõ´Ó±±¾©³ö·¢ÄܱéÀú¸÷³ÇÊеÄ×î¼Ñ·¾¶£¨ÂÃÐзÑ×îÉÙ£©£¬Ã¿Ìõ»¡ÉϵÄÊý×Ö±íʾ³ÇÊмäµÄÂÃÐзÑÓᣲ¢ÓÃCLOSED±í¼Ç¼±éÀú¹ýµÄ½áµã£¬OPEN±í¼Ç¼´ý±éÀúµÄ½áµã¡£»­³öclosedºÍopen±íµÄ±ä»¯¹ý³Ì£¬È»ºó¸ù¾Ýclosed±íÕÒ³ö×î¼Ñ·¾¶¡£

½â£º OPEN±í

À©Õ¹½Úµã A£¨0£© B£¨31£© C£¨28£© D£¨43£© C£¨54£© E£¨38£© C£¨59£© C£¨27£© A£¨51£© CLOSE±í

À©Õ¹½Úµã A£¨0£© C£¨28£© E£¨29£©

¸¸½Úµã NULL A C 44 ¸¸½Úµã NULL A A B B D D E E D£¨38£© B£¨43£© A£¨31£© 7.

Óÿò¼Ü±íʾÏÂÊö±¨µ¼µÄɳ³¾±©ÔÖº¦Ê¼þ

E D B [ÐéÄâлªÉç3ÔÂ16ÈÕµç]×òÈÕ£¬É³³¾±©Ï®»÷º«¹úºº³Ç£¬»ú³¡Óë¸ßËÙ¹«Â·±»ÆÈ¹Ø±Õ£¬Ôì³ÉµÄËðʧ²»Ïê¡£º«¹ú¹Ù·½Ê¾£¬Èç¹ûÐèÒªÖ±½ÓËðʧÇé¿ö£¬¿É´ýÒ»ÖܺóµÄ¹Ù·½¹«²¼µÄ×Ö¡£´Ë´Îɳ³¾±©ÆðÒòÖÐÈÕº«×¨¼ÒÈÏΪÊÇÓÉÓÚÖйúÄÚÃɹÅÇø¹ý·Ö¿ÑÄÁÆÆ»µÖ²±»ËùÖ¡£ Ìáʾ£º·ÖÎö¸ÅÀ¨ÓÃÏ»®Ïß±ê³öµÄÒªµã£¬¾­¹ý¸ÅÄÐγɲۣ¨Slot£©²¢Äâ³ö²ÛµÄÃû³Æ£¬Ñ¡Ìî²àÃæ£¨face£©Öµ¡£²àÃæ°üº¬¡°Öµ£¨value£©¡±£¬¡°Ä¬ÈÏÖµ£¨default£©¡±£¬¡°Èç¹ûÐèÒªÖµ£¨if-needed£©¡±£¬¡°Èç¹û¸½¼ÓÖµ£¨if-added£©¡±¼¸¸ö·½Ã棬Óò»µ½µÄ²àÃæÖµ¿Éɾ³ý¡£ FRAME£º Slot1£º Value£º Default£º If-needed£º If-added£º ½â£º

FRAME£ºÉ³³¾±© Slot1£ºÊ±¼ä Default£º If-needed£º If-added£º Slot2£ºµØµã Default£º If-needed£º If-added£º Slot3£ºËðʧ Value£º²»Ïê Default£º If-needed£ºÒ»Öܺó¹Ù·½¹«²¼Êý×Ö If-added£º

1. (5·Ö)ʲôÊÇ¡°ÖªÊ¶¹¤³Ì¡±£¿Ëü¶ÔÈ˹¤ÖÇÄܵķ¢Õ¹ÓкÎÖØÒª×÷Óã¿

2. (10·Ö)ÇëÓÃÏàÓ¦µÄν´Ê¹«Ê½±íʾÏÂÊöÓï¾ä£º

£¨1£©ÓеÄÈËϲ»¶×ãÇò£¬ÓеÄÈËϲ»¶ÅÅÇò£¬ÓеÄÈ˼Èϲ»¶×ãÇòÓÖϲ»¶ÅÅÇò¡£ £¨2£©²»ÊÇÿһ¸öÈ˶¼Ï²»¶ÓÎÓ¾¡£

£¨3£©Èç¹ûûÓÐÀûÏ¢£¬ÄÇô¾ÍûÓÐÈËÔ¸ÒâÈ¥´æÇ®¡£

£¨4£©¶ÔÓÚËùÓеÄxºÍy£¬Èç¹ûxÊÇyµÄ¸¸Ç×£¬yÊÇzµÄ¸¸Ç×£¬ÄÇôxÊÇzµÄ׿¸¸¡£ £¨5£©¶ÔÓÚËùÓеÄxºÍy£¬Èç¹ûxÊÇyµÄº¢×Ó£¬ÄÇôyÊÇxµÄ¸¸Ä¸¡£ £¨6£©µÇ¸ßÍûÔ¶¡£ £¨7£©Ïì¹Ä²»ÓÃÖØ´¸¡£

£¨8£©Èç¹ûb>a>0ºÍc>d>0£¬ÔòÓÐ(b*(a+c)/d)>b¡£

3. (5·Ö)ÊÔ½¨Á¢Ò»¸ö¡°Ñ§Éú¡±¿ò¼ÜÍøÂ磬ÆäÖÐÖÁÉÙÓС°Ñ§Éú»ù±¾Çé¿ö¡±¡¢¡°Ñ§Éú¿Î³ÌѧϰÇé¿ö¡±ºÍ¡°Ñ§Éú½±³ÍÇé¿ö¡±Èý¸ö¿ò¼ÜÃèÊö¡£

45

Slot4£ºÆðÒò Default£ºÖйúÄÚÃɹÅÇø Value£º3 ÔÂ15 ÈÕ Value£ºº«¹úºº³Ç Slot2£º Value£º Default£º If-needed£º If-added£º Slot3£º Value£º Default£º If-needed£º If-added£º ¡­¡­

4. (10·Ö)Çë°ÑÏÂÊöÊÂʵÓÃÒ»¸öÓïÒåÍøÂç±íʾ³öÀ´£º £¨1£©ÀîÃ÷ÊǶ«·½´óѧ¼ÆËã»úϵµÄÒ»ÃûѧÉú¡£ £¨2£©ËûסÔÚ¼ÆËã»úϵµÄѧÉúËÞÉáÀï¡£

£¨3£©¼ÆËã»úϵµÄÿ¼äѧÉúËÞÉá¶¼ÓÐһ̨ÁªÍøµÄ¼ÆËã»ú¡£ £¨4£©ÀîÃ÷ϲ»¶ÔÚËÞÉáµÄ¼ÆËã»úÉÏä¯ÀÀ¡£

5. (10·Ö)ÒÑÖªÏÂÊöÊÂʵ£º £¨1£©Ð¡Àîֻϲ»¶½ÏÈÝÒ׵Ŀγ̡£ £¨2£©¹¤³ÌÀà¿Î³ÌÊǽÏÄѵġ£

£¨3£©PRϵµÄËùÓпγ̶¼ÊǽÏÈÝÒ׵ġ£ £¨4£©PR150ÊÇPRϵµÄÒ»Ãſγ̡£

Ó¦Óùé½áÑÝÒïÍÆÀí»Ø´ðÎÊÌ⣺СÀîϲ»¶Ê²Ã´¿Î³Ì£¿

6. (10·Ö)ÒÑÖª£º

¹æÔò1£ºÈκÎÈ˵ÄÐֵܲ»ÊÇÅ®ÐÔ ¹æÔò2£ºÈκÎÈ˵ĽãÃñØÊÇÅ®ÐÔ ÊÂʵ£ºMaryÊÇBillµÄ½ãÃÃ

Óùé½áÍÆÀí·½·¨Ö¤Ã÷Mary²»ÊÇTomµÄÐֵܡ£

7. (15·Ö)¿¼ÂÇÏÂÃæµÄ¾ä×Ó£º ? ? ?

ÿ¸ö³ÌÐò¶¼´æÔÚBug º¬ÓÐBugµÄ³ÌÐòÎÞ·¨¹¤×÷ PÊÇÒ»¸ö³ÌÐò

£¨1£©Ò»½×ν´ÊÂß¼­±íʾÉÏÊö¾ä×Ó¡£ £¨2£©Ê¹Óùé½áÔ­ÀíÖ¤Ã÷P²»Äܹ¤×÷¡£

8. (10·Ö)ÈκÎͨ¹ýÁËÀúÊ·¿¼ÊÔ²¢ÖÐÁË²ÊÆ±µÄÈ˶¼ÊÇ¿ìÀֵġ£ÈκοÏѧϰ»òÐÒÔ˵ÄÈË¿ÉÒÔͨ¹ýËùÓп¼ÊÔ£¬Ð¡ÕŲ»Ñ§Ï°£¬µ«ºÜÐÒÔË£¬ÈκÎÈËÖ»ÒªÊÇÐÒÔ˵ľÍÄÜÖÐ²ÊÆ±¡£ ÇóÖ¤£ºÐ¡ÕÅÊÇ¿ìÀֵġ£

9. (10·Ö)ÒÑÖª£ºº£¹ØÖ°Ô±¼ì²éÿһ¸öÈë¾³µÄ²»ÖØÒªÈËÎijЩ··¶¾ÕßÈë¾³£¬²¢ÇÒ½öÊܵ½··¶¾Õߵļì²é£¬Ã»ÓÐÒ»¸ö··¶¾ÕßÊÇÖØÒªÈËÎï¡£ Ö¤Ã÷£ºº£¹ØÖ°Ô±ÖÐÓз·¶¾Õß¡£

10. (15·Ö)ÓÐÒ»¶ÑÓ²±Ò£¬¿ªÊ¼Ê±ÓÐ9ö¡£A¡¢BÁ½ÈËÂÖÁ÷´ÓÖÐȡӲ±Ò£¬Ã¿´Îȡʱ£¬¿ÉÒÔÈ¡1ö»òÕß2ö»òÕß3ö£¬¼ðÆð×îºóһöӲ±ÒÕßΪÊä·½¡£ÊÔÓò©ÞÄÊ÷Ö¤Ã÷£ººó¿ªÊ¼È¡Ó²±ÒÕß×ÜÄÜ»ñʤ£¬»òÕßÏÈ¿ªÊ¼È¡Ó²±ÒÕß×ÜÊÇ»áÊä¡£

46

47

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)