研究性学习案例

展智力,培养能力,激发学生学习数学的兴趣和求知欲,充分调动学生学习的积极性和主动性,小学数学的研究性学习则是在教师的指导下,是学生自己发现问题,带着问题运用观察、比较、分析、判断、推理等研究手段自己获取新的知识,使问题得到解决的一种学习活动。这种学习能有效地提高学生学习的兴趣,提高学生数学逻辑推理的思维能力,提高学生问题解决的策略能力,从而达到小学

数学教学的目标要求。

施良方教授在《教育理论:课堂教学的原理、策略与研究》一书提到“广义的知识包括两大类:一类是陈述性知识,即‘知什么’;另一类是程序性知识,即‘知如何’,它包括理智技能和认知策略,此外还包括动作技能中的认知成分。”程序性知识中的智慧技能、认知策略的形成则是研究性学习所要达成的目标,尤其是认知策略,学生只有通过自己学,才能掌握有意注意,思维,记忆等过程的技能。使学生学会学习,只有在教师的指导下,学生对学习材料通过自己的研究性学习,才能在学习的过程中不断地领悟认知策略,才能逐步地掌握怎么学,才能使他们能够在走出学校之后,不断地

有效地学习。

数学教育的核心是问题的解决。伟大的数学家希尔伯特说:“只要一门科学分支能提出大量的问题,它就充满着生命力;而问题缺乏则预示着独立发展的衰亡或终止。??数学研究也需要自己的问题,正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新方法和新观点,达到更为广阔和自由的境界。”小学数学的研究性学习正是要引导学生去发现他所未知的问题,通过数学手段来解决问题,且能用数学解决问题的策略迁移到其它问题的解决上。小学数学习题的研究性学习,既要注意生活实际中显示的数学问题,更要注意一些有一定研究价值的体现数学方法的习题。如小学数学中的行程问题,小学生学习后可能今后再也不可能碰到这样的问题,那么这类问题有否研究价值呢?学习研

究解决行程问题,恰是一种程序性知识的学习。研究这类问题将会告诉我们:如何从问题出发,寻找解决问题的条件,如何利用已有的条件探索条件之间复杂的隐含联系,从而创造出更新更直接的条件建立数学模型解决问题。这种问题解决策略正是通过对各种数学习题的研究性学习才得以形成。发现问题,研究问题,构建解决问题和认知策略,这就

是小学数学研究性学习的目的和意义。 二、小学数学研究性学习的内容

研究性学习可以分成形成型研究性学习,应用型研究性学习等等。小学数学研究性学习的内容大

致也可以有这几种。

数学新知识、新概念的学习与形成如果与学生已有的认知结构与具体经验很接近,即处于学生的最近发展区,这部分的学习内容可以作为研究性学习的内容。如:小数乘法的学习。学生已有整数乘法运算的知识与技能,小数乘法的计算方法的学习完全可以在教师的指导下完成。教师可以先让学生观察在整数乘法中,因数扩大或缩小和积扩大或缩之间的倍数关系,那么如果小数因数去掉小数点变成整数后计算得到的积和原来的积有什么关系呢?让学生思考研究。经过多题的比较研究,学生可明白因数扩大若干倍积也扩大相同的倍数,如果小数乘法变成整数乘法来计算,积扩大了若干倍,要恢复成原来的积,只要把扩大的积缩小相同的倍数即可。教师继续可引导学生去观察:小数乘法中积的小数位数与因数的小数位数之间的联系,找找规律,找找原因,学生就能得到小数乘法的计算法则。再如:学习三角形面积的计算,教师给出一个三角形图形,请学生量量算算它的面积大小,学生可能会用各种方法来试图计算它的面积大小,如用画方格的方法等。教师可以再给出一个完全一样的三角形,让学生想办法,看能不能用这两个完全一样的三角形,不用画方格的方法来计算出其中一个的面积。能不能用已学过的平行四边形面积计算的方法试一试,学生经过讨论、试验,会试图把这两

个三角形拼成一个平行四边形,再测量出平行四边形的底和高的长度,并会发现这样一个三角形的面积恰好是拼成的平行四边形面积的一半,并计算出平行四边形的面积除以2就是等底等高三角形的面积。虽然拼的方法不同但计算的结果都一样,这样就顺理成章地推导出三角形面积的计算方法。象这类举不胜举的数学基础知识和概念的形成性学习材料,都可以作为小学数学形成型研究性学习的内

容。

目前小学数学教学中教师普遍重视知识与技能形成性的研究性学习,而对另一种更重要的研究性学习,即问题解决的研究性学习或应用型的研究性学习却没有引起足够的重视。小学数学教学中对数学习题的知识功能较重视,而对它的教育功能不够重视,数学习题的解答往往停留在简单模仿的水平上,没有认识到数学习题是一个载体,通过解答数学习题可使学生的思维活动有一定水平的目的性、方向性、确定性和辨别性,从而成为培养学生良好的思维品质的重要工具。在数学习题解答的研究性学习中,有的放矢地转化解题方法,从一种途径转向另一种途径可以培养思维的灵活性。坚持数学运算速度的要求,同时使学生掌握合理的运算技巧和探索问题的方法,可以培养学生思维的敏捷性。分析数学习题条件的实质,以及条件之间的相互联系,发现其中的隐含条件,可以培养学生思维的深刻性。善于发现问题,提出质疑,及时摒弃自己的错误,可以培养学生思维的批判性。在解题中引导学生重视常规而又不墨守成规,寻求变异,从多角度,全方位考虑问题,可以培养学生思维的广阔性。在解题中鼓励学生主动地、独立地、别出心裁地提出新方法、新见解、不因循守旧,不迷信权威,善于联想、善于类比、可以培养学生思维的创造性。研究解答好思维性强的习题使学生得益匪

浅。

如学生学习了分解质因数知识后,可以出这样一道题,两个整数的积是144,差是10,这两个整

数分别是几?学生可能会把乘积是144的两个整数

都找出来列成一表: 1 2 3 4 6 8 9 12 144 72 48 36 24 18 16 12

这样可发现只有18与8是相差10,则18与8即是本题的答案。如果进一步提出还有没有别的方法可以解决这个问题呢?经过研究,可得到这样的一个结论,如果两个整数的积相等,那么这两个整数所含有的质因数的种类与个数完全一样,知道两个整数的积,只要把积所含有的质因数进行重新搭配,就能找出各种各样的乘法算式,如果因数是整数,则这些乘法算式的个数是有限的。同学们还会根据这个结论去编出很多相关的应用题。这样就把分解质因数这样一个数学知识巧学活用了。 再如学生学习了正方形、长方形、平行四边形、三角形、梯形面积计算方法后,让学生去研究这样一道题,由两个正方形组成的如图所示的图形,只知小正方形的边长为6,求阴影部分三角形的面积,开始学生会觉得很简单,因为它与知道两个正方形边长的题目很相似,再仔细一看,发觉缺少一个条件,即缺少大正方形边长,于是陷入一种困惑。

这时,不妨让学生试一试凭直觉你觉得面积应是几?很多人会猜是18!那么为什么呢?不妨再让学生去假设大正方形边长为已知条件,长度可以随意定,让学生去计算阴影部分面积,于是大家发现结果惊人的一致,都是18。这又是为什么呢?学生可以肯定阴影部分面积与小正方形有密切关系,而与大正方形没有多大的关系。此时让学生去观察三角形AEF与梯形CBEF的大小,有没有办法证明是一样大。再观察三角形AHB与三角形CHF的大小关系,会发现这里有一个等量替换的关系而恍然大悟。象这样:猜想----假设----验证----推理的研究过程将会激发学生极大的学习兴趣,也可能悟出一些问题解决的策略。要使数学习题成为小学数学

联系客服:779662525#qq.com(#替换为@)