23.(8.00分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统
计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2); (2)请你估计全校500名学生中最喜欢“排球”项目的有多少名? (3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
24.(8.00分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E. (1)求证:EA是⊙O的切线; (2)求证:BD=CF.
七、(本大题2个小题,每小题10分,满分20分)
25.(10.00分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3. (1)求该二次函数的解析式;
(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求
第5页(共27页)
M的坐标;
(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.
26.(10.00分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.
(1)如图1,当M在线段BO上时,求证:MO=NO;
(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB; (3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC?AC.
第6页(共27页)
参考答案与试题解析
一、选择题(本大题8个小题,每小题3分,满分24分) 1.(3.00分)﹣2的相反数是( ) A.2
B.﹣2 C.2﹣1 D.﹣
【分析】直接利用相反数的定义分析得出答案. 【解答】解:﹣2的相反数是:2. 故选:A.
【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.
2.(3.00分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A.1
B.2
C.8
D.11
【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可. 【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3, 4<x<10, 故选:C.
【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.
3.(3.00分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是( )
A.a>b B.|a|<|b| C.ab>0 D.﹣a>b
【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题. 【解答】解:由数轴可得, ﹣2<a<﹣1<0<b<1, ∴a<b,故选项A错误, |a|>|b|,故选项B错误,
第7页(共27页)
ab<0,故选项C错误, ﹣a>b,故选项D正确, 故选:D.
【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.
4.(3.00分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则( ) A.k<2
B.k>2
C.k>0 D.k<0
【分析】根据一次函数的性质,可得答案. 【解答】解:由题意,得 k﹣2>0, 解得k>2, 故选:B.
【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.
5.(3.00分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( ) A.甲 B.乙 C.丙 D.丁
【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【解答】解:∵1.5<2.6<3.5<3.68, ∴甲的成绩最稳定, ∴派甲去参赛更好, 故选:A.
【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.
第8页(共27页)