?xh?0.2,y?0,y?0.181,y?1?ey(1.0)01È¡¼ÆËã²¢Óë׼ȷ½âÏà±È½Ï¡£
10. Ö¤Ã÷½ây??f(x,y)µÄÏÂÁвî·Ö¹«Ê½
yn?1?1h??1?yn??3yn??1)(yn?yn?1)?(4yn24
ÊǶþ½×µÄ£¬²¢Çó³ö½Ø¶ÏÎó²îµÄÊ×Ïî¡£ 11. µ¼³ö¾ßÓÐÏÂÁÐÐÎʽµÄÈý½×·½·¨£º
??b1yn??1?b2yn??2). yn?1?a0yn?a1yn?1?a2yn?2?h(b0yn12. ½«ÏÂÁз½³Ì»¯ÎªÒ»½×·½³Ì×飺
y???3y??2y?0,1£©y(0)?1,y?(0)?1;
y???0.1(1?y2)y??y?0,2£©y(0)?1,y?(0)?0;
3£©
x??(t)??xy??,y(t)??,r?x2?y2,33rr
x(0)?0.4,x?(0)?0,y(0)?0,y?(0)?2. 13. È¡h=0.25£¬Óòî·Ö·½·¨½â±ßÖµÎÊÌâ
?y???y?0;??y(0)?0,y(1)?1.68.
14. ¶Ô·½³Ìy???f(x,y)¿É½¨Á¢²î·Ö¹«Ê½
yn?1?2yn?yn?1?h2f(xn,yn),
ÊÔÓÃÕâÒ»¹«Ê½Çó½â³õÖµÎÊÌâ
?y???1;??y(0)?y(1)?0,
ÑéÖ¤¼ÆËã½âºãµÈÓÚ׼ȷ½â
x2?xy(x)?.2
15. È¡h=0.2Óòî·Ö·½·¨½â±ßÖµÎÊÌâ
?(1?x2)y???xy??3y?6x?3;??y(0)?y?(0)?1,y(1)?2.
µÚÁùÕ ·½³ÌÇó¸ù
21. Óöþ·Ö·¨Çó·½³Ìx?x?1?0µÄÕý¸ù£¬ÒªÇóÎó²î<0.05¡£
2. ÓñÈÀýÇó¸ù·¨Çóf(x)?1?xsinx?0ÔÚÇø¼ä[0,1]ÄÚµÄÒ»¸ö¸ù£¬Ö±µ½½üËÆ¸ùxkÂú×㾫¶È
|f(xk)|?0.005ʱÖÕÖ¹¼ÆËã¡£
323. ΪÇó·½³Ìx?x?1?0ÔÚx0?1.5¸½½üµÄÒ»¸ö¸ù£¬É轫·½³Ì¸Äд³ÉÏÂÁеȼÛÐÎʽ£¬²¢½¨Á¢ÏàÓ¦µÄµü
´ú¹«Ê½¡£
22x?1?1/xk?1kx?1?1/x1£©£¬µü´ú¹«Ê½£»
23x?1?xk?1k2£©x?1?x£¬µü´ú¹«Ê½£»
323£©
x2?1x?1£¬µü´ú¹«Ê½xk?1?1/xk?1¡£
ÊÔ·ÖÎöÿÖÖµü´ú¹«Ê½µÄÊÕÁ²ÐÔ£¬²¢Ñ¡È¡Ò»ÖÖ¹«Ê½Çó³ö¾ßÓÐËÄλÓÐЧÊý×ֵĽüËÆ¸ù¡£ 4. ±È½ÏÇóe?10x?2?0µÄ¸ùµ½ÈýλСÊýËùÐèµÄ¼ÆËãÁ¿£» 1£©ÔÚÇø¼ä[0,1]ÄÚÓöþ·Ö·¨£»
xk2) Óõü´ú·¨xk?1?(2?e)/10£¬È¡³õÖµx0?0¡£
x5. ¸ø¶¨º¯Êýf(x)£¬Éè¶ÔÒ»ÇÐx,f?(x)´æÔÚÇÒ0?m?f?(x)?M£¬Ö¤Ã÷¶ÔÓÚ·¶Î§ÄÚ0???2/MµÄÈÎ
?ÒⶨÊý¦Ë£¬µü´ú¹ý³Ìxk?1?xk??f(xk)¾ùÊÕÁ²ÓÚf(x)µÄ¸ùx¡£
6. ÒÑÖªx??(x)ÔÚÇø¼ä[a,b]ÄÚÖ»ÓÐÒ»¸ù£¬¶øµ±a |??(x)|?k?1£¬ ÊÔÎÊÈçºÎ½«x??(x)»¯ÎªÊÊÓÚµü´úµÄÐÎʽ£¿ ½«x?tgx»¯ÎªÊÊÓÚµü´úµÄÐÎʽ£¬²¢Çóx=4.5£¨»¡¶È£©¸½½üµÄ¸ù¡£ 3?7. ÓÃÏÂÁз½·¨Çóf(x)?x?3x?1?0ÔÚx0?2¸½½üµÄ¸ù¡£¸ùµÄ׼ȷֵx£½1.87938524¡£¬ÒªÇó¼ÆËã ½á¹û׼ȷµ½ËÄλÓÐЧÊý×Ö¡£ 1) ÓÃÅ£¶Ù·¨£» 2£©ÓÃÏҽط¨£¬È¡x0?1,x1?1.9£» 3£©ÓÃÅ×ÎïÏß·¨£¬È¡x0?1,x1?3,x2?2¡£ 8. Óöþ·Ö·¨ºÍÅ£¶Ù·¨Çóx?tgx?0µÄ×îСÕý¸ù¡£ 9. Ñо¿ÇóaµÄÅ£¶Ù¹«Ê½ xk?1?Ö¤Ã÷¶ÔÒ»ÇÐk?1,2,?,xk?1a(xk?),x0?0,2xk aÇÒÐòÁÐx1,x2,?ÊǵݼõµÄ¡£ 10. ¶ÔÓÚf(x)?0µÄÅ£¶Ù¹«Ê½xk?1?xk?f(xk)/f?(xk)£¬Ö¤Ã÷ Rk?(xk?xk?1)/(xk?1?xk?2)2 ?ÊÕÁ²µ½?f??(x)/(2f?(x))£¬ÕâÀïxΪf(x)?0µÄ¸ù¡£ ??11. ÊÔ¾ÍÏÂÁк¯ÊýÌÖÂÛÅ£¶Ù·¨µÄÊÕÁ²ÐÔºÍÊÕÁ²ËÙ¶È£º ??x,x?0;f(x)??????x,x?0; 1) 23??x,x?0;f(x)??23??x,x?0. ?2) 3212. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ìx?a?0£¬µ¼³öÇóÁ¢·½¸ùaµÄµü´ú¹«Ê½£¬²¢ÌÖÂÛÆäÊÕÁ²ÐÔ¡£ 13. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ì f(x)?1?a?02x£¬µ¼³öÇóaµÄµü´ú¹«Ê½£¬²¢Óô˹«Ê½Çó115µÄÖµ¡£ 14. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ìf(x)?x?a?0ºÍ k??nf(x)?1?a?0nnx£¬·Ö±ðµ¼³öÇóaµÄµü´ú¹«Ê½£¬²¢Çó lim(na?xk?1)/(na?xk)2.15. Ö¤Ã÷µü´ú¹«Ê½ xk?1x(x?3a)?kk23xk?a 2?ÊǼÆËãaµÄÈý½×·½·¨¡£¼Ù¶¨³õÖµx0³ä·Ö¿¿½ü¸ùx£¬Çó lim(a?xk?1)/(a?xk)3.k?? µÚÆßÕ ½âÏßÐÔ·½³Ì×éµÄÖ±½Ó·½·¨ 1. ¿¼ÂÇ·½³Ì×飺 ?0.4096x1?0.1234x2?0.2246x?0.3872x?12??0.3645x1?0.1920x2??0.1784x1?0.4002x2?0.3678x3?0.2943x4?0.4043;?0.4015x3?0.1129x4?0.1550;?0.3781x3?0.0643x4?0.4240;?0.2786x3?0.3927x4??0.2557; (a) Óøß˹ÏûÈ¥·¨½â´Ë·½³Ì×飨ÓÃËÄλСÊý¼ÆË㣩£¬ (b) ÓÃÁÐÖ÷ÔªÏûÈ¥·¨½âÉÏÊö·½³Ì×é²¢ÇÒÓë(a)±È½Ï½á¹û¡£ 2. (a) ÉèAÊǶԳÆÕóÇÒa11?0£¬¾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬AÔ¼»¯Îª ?a11??0Ö¤Ã÷A2ÊǶԳƾØÕó¡£ (b)Óøß˹ÏûÈ¥·¨½â¶Ô³Æ·½³Ì×飺 T?a1?A2? ?0.6428x1?0.3475x2?0.8468x3?0.4127;??0.3475x1?1.8423x2?0.4759x3?1.7321;??0.8468x?0.4759x?1.2147x??0.8621.123? 4. ÉèAΪn½×·ÇÆæÒì¾ØÕóÇÒÓзֽâʽA=LU£¬ÆäÖÐLΪµ¥Î»ÏÂÈý½ÇÕó£¬UΪÉÏÈý½ÇÕó£¬ÇóÖ¤AµÄËùÓÐ˳ÐòÖ÷×Óʽ¾ù²»ÎªÁã¡£ 5. Óɸß˹ÏûÈ¥·¨ËµÃ÷µ±?i?0(i?1,2,?,n?1)ʱ£¬ÔòA=LU£¬ÆäÖÐLΪµ¥Î»ÏÂÈý½ÇÕó£¬U ΪÉÏÈý½ÇÕó¡£ |aii|??|aij|(i?1,2,?,n),6. ÉèA Ϊn½×¾ØÕó£¬Èç¹û j?1j?in³ÆAΪ¶Ô½ÇÓÅÊÆÕó¡£Ö¤Ã÷£ºÈôAÊǶԽÇÓÅÊÆÕó£¬ ¾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬A¾ßÓÐÐÎʽ ?a11??0T?a1?A2?¡£ 7. ÉèAÊǶԳÆÕý¶¨¾ØÕ󣬾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬AÔ¼»¯Îª ?a11??0A?(aij)n,A2?(aijÆäÖÐ (2)T?a1?A2?£¬ )n?1; Ö¤Ã÷ £¨1£©AµÄ¶Ô½ÇÔªËØaii?0(i?1,2,?,n); £¨2£©A2ÊǶԳÆÕý¶¨¾ØÕó£» (n)a?aii,(i?1,2,?,n); n£¨3£© £¨4£©AµÄ¾ø¶ÔÖµ×î´óµÄÔªËØ±ØÔÚ¶Ô½ÇÏßÉÏ£» £¨5£©2?i,j?n(2)max|aij|?max|aij|;2?i,j?n £¨6£©´Ó£¨2£©£¬£¨3£©£¬£¨5£©ÍƳö£¬Èç¹û |aij|?1£¬Ôò¶ÔËùÓÐk (k)|aij|?1. 8. ÉèLkΪָ±êΪkµÄ³õµÈÏÂÈý½ÇÕ󣬼´ ?1????1Lk??mk?1,k????mnk???????1????1??£¨³ýµÚkÁжԽÇÔªÏÂÔªËØÍ⣬ºÍµ¥Î»ÕóIÏàͬ£© ~L?IijLkIijÒ²ÊÇÒ»¸öÖ¸±êΪkµÄ³õµÈÏÂÈý½ÇÕ󣬯äÖÐIijΪ³õµÈÅÅÁÐÕó¡£ ÇóÖ¤µ±i,j?kʱ£¬k9. ÊÔÍÆµ¼¾ØÕóAµÄCrout·Ö½âA=LUµÄ¼ÆË㹫ʽ£¬ÆäÖÐLΪÏÂÈý½ÇÕó£¬UΪµ¥Î»ÉÏÈý½ÇÕó¡£ 10. ÉèUx?d£¬ÆäÖÐUΪÈý½Ç¾ØÕó¡£ (a) ¾ÍUΪÉϼ°ÏÂÈý½Ç¾ØÕóÍÆµ¼Ò»°ãµÄÇó½â¹«Ê½£¬²¡Ð´³öËã·¨¡£ (b) ¼ÆËã½âÈý½ÇÐη½³Ì×éUx?dµÄ³Ë³ý·¨´ÎÊý¡£ (c) ÉèUΪ·ÇÆæÒìÕó£¬ÊÔÍÆµ¼ÇóU?1µÄ¼ÆË㹫ʽ¡£ ?111. Ö¤Ã÷£¨a£©Èç¹ûAÊǶԳÆÕý¶¨Õó£¬ÔòAÒ²ÊÇÕý¶¨Õó£» £¨b£©Èç¹ûAÊǶԳÆÕý¶¨Õó£¬ÔòA¿ÉΨһд³ÉA?LL,ÆäÖÐLÊǾßÓÐÕý¶Ô½ÇÔªµÄÏÂÈý½ÇÕó¡£ T