µÚÒ»Õ Ð÷ ÂÛ
1. Éèx>0,xµÄÏà¶ÔÎó²îΪ¦Ä,ÇólnxµÄÎó²î. 2. ÉèxµÄÏà¶ÔÎó²îΪ2£¥,ÇóxµÄÏà¶ÔÎó²î.
3. ÏÂÁи÷Êý¶¼ÊǾ¹ýËÄÉáÎåÈëµÃµ½µÄ½üËÆÊý,¼´Îó²îÏÞ²»³¬¹ý×îºóһλµÄ°ë¸öµ¥Î»,ÊÔÖ¸³öËüÃÇÊǼ¸Î»
ÓÐЧÊý×Ö:
*****x1?1.1021,x2?0.031,x3?385.6,x4?56.430,x5?7?1.0.
n4. ÀûÓù«Ê½(3.3)ÇóÏÂÁи÷½üËÆÖµµÄÎó²îÏÞ:
************,x2,x3,x4(i)x1?x2?x4,(ii)x1x2x3,(iii)x2/x4,ÆäÖÐx1¾ùΪµÚ3ÌâËù¸øµÄÊý.
5. ¼ÆËãÇòÌå»ýҪʹÏà¶ÔÎó²îÏÞΪ1£¥,ÎʶÈÁ¿°ë¾¶RʱÔÊÐíµÄÏà¶ÔÎó²îÏÞÊǶàÉÙ? 6. ÉèY0?28,°´µÝÍÆ¹«Ê½
Yn?Yn?1?1783100 ( n=1,2,¡)
Y¼ÆËãµ½Y100.ÈôÈ¡783¡Ö27.982(ÎåλÓÐЧÊý×Ö),ÊÔÎʼÆËã100½«Óжà´óÎó²î?
27. Çó·½³Ìx?56x?1?0µÄÁ½¸ö¸ù,ʹËüÖÁÉÙ¾ßÓÐËÄλÓÐЧÊý×Ö(783¡Ö27.982).
8. µ±N³ä·Ö´óʱ,ÔõÑùÇó
???N1dx21?x?
29. Õý·½Ðεı߳¤´óԼΪ100©M,Ó¦ÔõÑù²âÁ¿²ÅÄÜʹÆäÃæ»ýÎó²î²»³¬¹ý1©M?
10. Éè
S?12gt2¼Ù¶¨gÊÇ׼ȷµÄ,¶ø¶ÔtµÄ²âÁ¿ÓСÀ0.1ÃëµÄÎó²î,Ö¤Ã÷µ±tÔö¼ÓʱSµÄ¾ø¶ÔÎó²îÔö¼Ó,
¶øÏà¶ÔÎó²îÈ´¼õС. 11. ÐòÁÐ
{yn}Âú×ãµÝÍÆ¹ØÏµyn?10yn?1?1(n=1,2,¡),Èôy0?2?1.41(ÈýλÓÐЧÊý×Ö),¼ÆËãµ½y10ʱÎó²îÓжà´ó?Õâ¸ö¼ÆËã¹ý³ÌÎȶ¨Âð?
6f?(2?1)12. ¼ÆËã,È¡2?1.4,ÀûÓÃÏÂÁеÈʽ¼ÆËã,ÄÄÒ»¸öµÃµ½µÄ½á¹û×îºÃ?
113,(3?22),,99?702.(2?1)6(3?22)3
13. f(x)?ln(x?¼Û¹«Ê½
x2?1),Çóf(30)µÄÖµ.Èô¿ªÆ½·½ÓÃÁùλº¯Êý±í,ÎÊÇó¶ÔÊýʱÎó²îÓжà´ó?Èô¸ÄÓÃÁíÒ»µÈ
ln(x?x2?1)??ln(x?x2?1)
¼ÆËã,Çó¶ÔÊýʱÎó²îÓжà´ó?
14. ÊÔÓÃÏûÔª·¨½â·½³Ì×é
?x1?1010x2?1010;x1?x2?2.¼Ù¶¨Ö»ÓÃÈýλÊý¼ÆËã,Îʽá¹ûÊÇ·ñ¿É¿¿?
15. ÒÑÖªÈý½ÇÐÎÃæ»ý
s?1?absinc,0?c?22,ÇÒ²âÁ¿a ,b ,c µÄÎó²î·Ö±ðΪ?a,?b,?c.Ö¤ÆäÖÐcΪ»¡¶È,
Ã÷Ãæ»ýµÄÎó²î?sÂú×ã
?s?a?b?c???.sabc
µÚ¶þÕ ²åÖµ·¨
1. ¸ù¾Ý(2.2)¶¨ÒåµÄ·¶µÂÃÉÐÐÁÐʽ,Áî
1Vn(x)?Vn(x0,x1,?,xn?1,x)??11 Ö¤Ã÷Vn(x)ÊÇn´Î¶àÏîʽ,ËüµÄ¸ùÊÇx0,?,xn?1,ÇÒ
x0?xn?1x2x0???nx0?x2?xn
2nxn?x?1n?1Vn(x)?Vn?1(x0,x1,?,xn?1)(x?x0)?(x?xn?1).
2. µ±x= 1 , -1 , 2 ʱ, f(x)= 0 , -3 , 4 ,Çóf(x)µÄ¶þ´Î²åÖµ¶àÏîʽ.
3. ¸ø³öf(x)=ln x µÄÊýÖµ±íÓÃÏßÐÔ²åÖµ¼°¶þ´Î²åÖµ¼ÆËãln 0.54 µÄ½üËÆÖµ.
x lnx
4. ¸ø³öcos x,0¡ã¡Üx ¡Ü90¡ãµÄº¯Êý±í,²½³¤h =1¡ä=(1/60)¡ã,Èôº¯Êý±í¾ßÓÐ5λÓÐЧÊý×Ö,Ñо¿ÓÃÏßÐÔ
²åÖµÇócos x ½üËÆÖµÊ±µÄ×ÜÎó²î½ç.
0.4 -0.916291 0.5 -0.693147 0.6 -0.510826 0.7 -0.357765 0.8 -0.223144 maxl2(x)x?x?khx0?x?x3k05. Éè,k=0,1,2,3,Çó.
6. Éè
xjΪ»¥Òì½Úµã(j=0,1,¡,n),ÇóÖ¤:
kkxl(x)?x(k?0,1,?,n);?jjj?0nni)
ii)
?(xj?0j?x)klj(x)???k?1,2,?,n).
2maxf(x)?Ca,b??f(a)?f(b)?07. ÉèÇÒ,ÇóÖ¤a?x?bx1f(x)?(b?a)2maxf?(x).8a?x?b
x8. ÔÚ?4?x?4Éϸø³öf(x)?eµÄµÈ¾à½Úµãº¯Êý±í,ÈôÓöþ´Î²åÖµÇóeµÄ½üËÆÖµ,Ҫʹ½Ø¶ÏÎó²î²»³¬¹ý
10?6,ÎÊʹÓú¯Êý±íµÄ²½³¤hӦȡ¶àÉÙ?
n449. Èôyn?2,Çó?yn¼°?yn.
10. Èç¹ûf(x)ÊÇm´Î¶àÏîʽ,¼Ç?f(x)?f(x?h)?f(x),Ö¤Ã÷f(x)µÄk½×²î·Ö?f(x)(0?k?m)ÊÇ
km?k´Î¶àÏîʽ,²¢ÇÒ?m?lf(x)?0(lΪÕýÕûÊý).
11. Ö¤Ã÷?(fkgk)?fk?gk?gk?1?fk.
12. Ö¤Ã÷k?0n?1?f?gkn?1k?fngn?f0g0??gk?1?fk.k?0n?1
13. Ö¤Ã÷
??j?02yj??yn??y0.
n?1nf(x)?a?ax???ax?ax01n?1n14. ÈôÓÐn¸ö²»Í¬Êµ¸ùx1,x2,?,xn,Ö¤Ã÷
?f?(x)j?1jnxkj??0,0?k?n?2;?1an,k?n?1.
15. Ö¤Ã÷n½×¾ù²îÓÐÏÂÁÐÐÔÖÊ: i)
ÈôF(x)?cf(x),Ôò
F?x0,x1,?,xn??cf?x0,x1,?,xn?;
Fx,x,?,xn??f?x0,x1,?,xn??g?x0,x1,?,xn?.
ii) ÈôF(x)?f(x)?g(x),Ôò?0174f?20,21,?,27?f?20,21,?,28?f(x)?x?x?3x?1????. 16. ,Çó¼°
17. Ö¤Ã÷Á½µãÈý´Î°£¶ûÃ×ÌØ²åÖµÓàÏîÊÇ
R3(x)?f(4)(?)(x?xk)2(x?xk?1)2/4!,??(xk,xk?1)
²¢ÓÉ´ËÇó³ö·Ö¶ÎÈý´Î°£¶ûÃ×ÌØ²åÖµµÄÎó²îÏÞ.
18. ÇóÒ»¸ö´ÎÊý²»¸ßÓÚ4´ÎµÄ¶àÏîʽP(x),ʹËüÂú×ãP(0)?P(?k?1)²¢ÓÉ´ËÇó³ö·Ö¶ÎÈý´Î°£¶ûÃ×ÌØ²åÖµ
µÄÎó²îÏÞ.
19. ÊÔÇó³öÒ»¸ö×î¸ß´ÎÊý²»¸ßÓÚ4´ÎµÄº¯Êý¶àÏîʽP(x),ÒÔ±ãʹËüÄܹ»Âú×ãÒÔϱ߽çÌõ¼þ
P(0)?P?(0)?0,P(1)?P?(1)?1,P(2)?1.
20. Éè
f(x)?C?a,b?,°Ñ?a,b?·ÖΪnµÈ·Ö,ÊÔ¹¹ÔìÒ»¸ǫ̈½×ÐεÄÁã´Î·Ö¶Î²åÖµº¯Êý?n(x)²¢Ö¤Ã÷µ±
n??ʱ,?n(x)ÔÚ?a,b?ÉÏÒ»ÖÂÊÕÁ²µ½f(x).
2f(x)?1/(1?x),ÔÚ?5?x?5ÉÏÈ¡n?10,°´µÈ¾à½ÚµãÇó·Ö¶ÎÏßÐÔ²åÖµº¯ÊýIh(x),¼ÆËã¸÷½Úµã¼ä21. Éè
Öе㴦µÄIh(x)Óëf(x)µÄÖµ,²¢¹À¼ÆÎó²î.
a,b?ÉϵķֶÎÏßÐÔ²åÖµº¯ÊýIh(x),²¢¹À¼ÆÎó²î.
22. Çóf(x)?xÔÚ?24a,b?Éϵķֶΰ£¶ûÃ×ÌØ²åÖµ,²¢¹À¼ÆÎó²î. f(x)?x23. ÇóÔÚ?24. ¸ø¶¨Êý¾Ý±íÈçÏÂ:
xj yj 0.25 0.5000 0.30 0.5477 0.39 0.6245 0.45 0.6708 0.53 0.7280 ÊÔÇóÈý´ÎÑùÌõ²åÖµS(x)²¢Âú×ãÌõ¼þ
i) ii)
S?(0.25)?1.0000,S?(0.53)?0.6868; S?(0.25)?S?(0.53)?0.
2f(x)?C?a,b?,S(x)ÊÇÈý´ÎÑùÌõº¯Êý,Ö¤Ã÷ 25. Èô
i)
??ba?f?(x)?dx???S?(x)?dx???f?(x)?S?(x)?dx?2?S?(x)?f?(x)?S?(x)?dxaaa2b2b2b;
ii) Èôf(xi)?S(xi)(i?0,1,?,n),ʽÖÐxiΪ²åÖµ½Úµã,ÇÒa?x0?x1???xn?b,Ôò
baS?(x)?f?(x)?S?(x)?dx?S?(b)?f?(b)?S?(b)??S?(a)?f?(a)?S?(a)?.
26. ±à³ö¼ÆËãÈý´ÎÑùÌõº¯ÊýS(x)ϵÊý¼°ÆäÔÚ²åÖµ½ÚµãÖеãµÄÖµµÄ³ÌÐò¿òͼ(S(x)¿ÉÓÃ(8.7)ʽµÄ±í´ïʽ).
µÚÈýÕ º¯Êý±Æ½üÓë¼ÆËã
1. (a)ÀûÓÃÇø¼ä±ä»»ÍƳöÇø¼äΪ?a,b?µÄ²®¶÷˹̹¶àÏîʽ.
0,?/2?ÉÏÇó1´ÎºÍÈý´Î²®¶÷˹̹¶àÏîʽ²¢»³öͼÐÎ,²¢ÓëÏàÓ¦µÄÂí¿ËÀÍÁÖ¼¶Êý(b)¶Ôf(x)?sinxÔÚ?²¿·ÖºÍÎó²î×ö±È½Ï. 2. ÇóÖ¤:
(a)µ±m?f(x)?Mʱ,m?Bn(f,x)?M. (b)µ±f(x)?xʱ,Bn(f,x)?x.
0,2??µÄ×î¼ÑÒ»Ö±ƽü¶àÏîʽ.
3. ÔÚ´ÎÊý²»³¬¹ý6µÄ¶àÏîʽÖÐ,Çóf(x)?sin4xÔÚ?a,b?ÉÏÁ¬Ðø,Çóf(x)µÄÁã´Î×î¼ÑÒ»Ö±ƽü¶àÏîʽ.
4. ¼ÙÉèf(x)ÔÚ?5. ѡȡ³£Êýa,ʹ0?x?1maxx3?ax´ïµ½¼«Ð¡,ÓÖÎÊÕâ¸ö½âÊÇ·ñΨһ?
0,?/2?ÉϵÄ×î¼ÑÒ»´Î±Æ½ü¶àÏîʽ,²¢¹À¼ÆÎó²î.
6. Çóf(x)?sinxÔÚ?0,17. Çóf(x)?eÔÚ??ÉϵÄ×î¼ÑÒ»´Î±Æ½ü¶àÏîʽ.
x2p(x)?x?rÔÚ??1,1?ÉÏÓëÁãÆ«²î×îС?rÊÇ·ñΨһ? 8. ÈçºÎѡȡr,ʹ
0,19. Éèf(x)?x?3x?1,ÔÚ??ÉÏÇóÈý´Î×î¼Ñ±Æ½ü¶àÏîʽ.
4310. Áî
Tn(x)?Tn(2x?1),x??0,1?,ÇóT0*(x),T1*(x),T2*(x),T3(x).
11. ÊÔÖ¤12. ÔÚ??T*n(x)?ÊÇÔÚ?0,1?ÉÏ´øÈ¨
??1x?x2µÄÕý½»¶àÏîʽ.
?1,1?ÉÏÀûÓòåÖµ¼«Ð¡»¯Çó1f(x)?tg?1xµÄÈý´Î½üËÆ×î¼Ñ±Æ½ü¶àÏîʽ.
?x?1,1?ÉϵIJåÖµ¼«Ð¡»¯½üËÆ×î¼Ñ±Æ½ü¶àÏîʽΪLn(x),Èôf?Ln13. Éèf(x)?eÔÚ?Óнç,Ö¤Ã÷¶ÔÈκÎ
n?1,´æÔÚ³£Êý?n¡¢?n,ʹ
?nTn?1(x)?f(x)?Ln(x)??nTn?1(x)(?1?x?1).
112331541655?(x)?1?x?x?x?x?x?1,1??28243843840,ÊÔ½«?(x)½µµÍµ½3´Î¶àÏîʽ²¢¹À¼Æ14. ÉèÔÚÉÏ
Îó²î. 15. ÔÚ??1,1?ÉÏÀûÓÃÃݼ¶ÊýÏîÊýÇóf(x)?sinxµÄ3´Î±Æ½ü¶àÏîʽ,ʹÎó²î²»³¬¹ý0.005.
*?a,a?ÉϵÄÁ¬ÐøÆæ(ż)º¯Êý,Ö¤Ã÷²»¹ÜnÊÇÆæÊý»òżÊý,f(x)µÄ×î¼Ñ±Æ½ü¶àÏîʽFn(x)?Hn16. f(x)ÊÇ?Ò²ÊÇÆæ(ż)º¯Êý.
?ax?b?sinx?dxΪ×îС.²¢Óë1Ìâ¼°6ÌâµÄÒ»´Î±Æ½ü¶àÏîʽÎó²î×÷±È½Ï.
17. Çóa¡¢bʹ?201g(x)?C?a,b?,¶¨Òå f(x)18. ¡¢
?2(a)(f,g)??f?(x)g?(x)dx;(b)(f,g)??f?(x)g?(x)dx?f(a)g(a);aabb
ÎÊËüÃÇÊÇ·ñ¹¹³ÉÄÚ»ý?
x6dx?01?x19. ÓÃÐíÍß×Ȳ»µÈʽ(4.5)¹À¼ÆµÄÉϽç,²¢Óûý·ÖÖÐÖµ¶¨Àí¹À¼ÆÍ¬Ò»»ý·ÖµÄÉÏϽç,²¢±È½ÏÆä½á¹û.
120. Ñ¡Ôña,ʹÏÂÁлý·ÖÈ¡µÃ×îСֵ:21. Éè¿Õ¼ä
?1?1(x?ax2)2dx,?x?ax2dx?11.
???span?1,x?,?2?span?x100,x101?2x?C?0,1???,·Ö±ðÔÚ1¡¢2ÉÏÇó³öÒ»¸öÔªËØ,ʹµÃÆäΪ
µÄ×î¼Ñƽ·½±Æ½ü,²¢±È½ÏÆä½á¹û.
?1?span?1,x2,x4?f(x)?x?1,1??22. ÔÚÉÏ,ÇóÔÚÉϵÄ×î¼Ñƽ·½±Æ½ü.
23.
un(x)?sin?(n?1)arccosx?1?x2ÊǵڶþÀàÇбÈÑ©·ò¶àÏîʽ,Ö¤Ã÷ËüÓеÝÍÆ¹ØÏµ
un?1?x??2xun?x??un?1?x?.
24. ½«
f(x)?sin1x??1,1?2ÔÚÉϰ´ÀÕÈõ¶àÏîʽ¼°ÇбÈÑ©·ò¶àÏîʽչ¿ª,ÇóÈý´Î×î¼Ñƽ·½±Æ½ü¶àÏîʽ²¢
»³öÎó²îͼÐÎ,ÔÙ¼ÆËã¾ù·½Îó²î.
?1,1?ÉÏÕ¹³ÉÇбÈÑ©·ò¼¶Êý.
25. °Ñf(x)?arccosxÔÚ?2y?a?bx26. ÓÃ×îС¶þ³Ë·¨ÇóÒ»¸öÐÎÈçµÄ¾Ñ鹫ʽ,ʹËüÓëÏÂÁÐÊý¾ÝÄâºÏ,²¢Çó¾ù·½Îó²î.
xi yi 19 19.0 25 32.3 31 49.0 38 73.3 44 97.8 27. ¹Û²âÎïÌåµÄÖ±ÏßÔ˶¯,µÃ³öÒÔÏÂÊý¾Ý: ʱ¼ät(Ãë) ¾àÀës(Ã×) ÇóÔ˶¯·½³Ì. 28. ÔÚij»¯Ñ§·´Ó¦Àï,¸ù¾ÝʵÑéËùµÃ·Ö½âÎïµÄŨ¶ÈÓëʱ¼ä¹ØÏµÈçÏÂ:
0 0 0.9 10 1.9 30 3.0 50 3.9 80 5.0 110 ʱ¼ä Ũ¶È 0 5 0 1.27 10 2.16 15 2.86 20 3.44 25 3.87 30 4.15 35 4.37 40 4.51 45 4.58 50 4.62 55 4.64 ÓÃ×îС¶þ³ËÄâºÏÇóy?f(t).
29. ±à³öÓÃÕý½»¶àÏîʽ×ö×îС¶þ³ËÄâºÏµÄ³ÌÐò¿òͼ. 30. ±à³ö¸Ä½øFFTËã·¨µÄ³ÌÐò¿òͼ. 31. ÏÖ¸ø³öÒ»ÕżÇ¼?xk???4,3,2,1,0,1,2,3?,ÊÔÓøĽøFFTËã·¨Çó³öÐòÁÐ?xk?µÄÀëɢƵÆ×
?Ck?(k?0,1,?,7).
µÚËÄÕ ÊýÖµ»ý·ÖÓëÊýֵ΢·Ö
1. È·¶¨ÏÂÁÐÇó»ý¹«Ê½ÖеĴý¶¨²ÎÊý,ʹÆä´úÊý¾«¶È¾¡Á¿¸ß,²¢Ö¸Ã÷Ëù¹¹Ôì³öµÄÇó»ý¹«Ê½Ëù¾ßÓеĴúÊý¾«
¶È: (1)(2)(3)(4)
?h?h2hf(x)dx?A?1f(?h)?A0f(0)?A1f(h); ;
???2h1f(x)dx?A?1f(?h)?A0f(0)?A1f(h)?1f(x)dx??f(?1)?2f(x1)?3f(x2)?/3;
.
?h0f(x)dx?h?f(0)?f(h)?/1?ah2?f?(0)?f?(h)?2. ·Ö±ðÓÃÌÝÐι«Ê½ºÍÐÁÆÕɹ«Ê½¼ÆËãÏÂÁлý·Ö:
1(1?e)xdx,n?8dx,n?10??04?x20x(1); (2);
11?x2(3)
?9?1xdx,n?4; (4)
?60?sin2?dx,n?6.
3. Ö±½ÓÑéÖ¤¿ÂÌØË¹¹«Ê½(2.4)¾ßÓÐ5´Î´úÊý¾«¶È. 4. ÓÃÐÁÆÕɹ«Ê½Çó»ý·Ö
?10e?xdx²¢¼ÆËãÎó²î.
5. ÍÆµ¼ÏÂÁÐÈýÖÖ¾ØÐÎÇó»ý¹«Ê½:
(1)
??babf(x)dx?(b?a)f(a)?f(x)dx?(b?a)f(b)?f?(?)(b?a)22; f?(?)(b?a)22;
(2)
a(3)
?baf(x)dx?(b?a)f(a?bf?(?))?(b?a)3224.
6. Ö¤Ã÷ÌÝÐι«Ê½(2.9)ºÍÐÁÆÕɹ«Ê½(2.11)µ±n??ʱÊÕÁ²µ½»ý·Ö7. Óø´»¯ÌÝÐι«Ê½Çó»ý·Ö
?baf(x)dx.
?baf(x)dx,ÎÊÒª½«»ý·ÖÇø¼ä?a,b?·Ö³É¶àÉٵȷÖ,²ÅÄܱ£Ö¤Îó²î²»³¬¹ý?(Éè²»
¼ÆÉáÈëÎó²î)?
28. ÓÃÁú±´¸ñ·½·¨¼ÆËã»ý·Ö??10e?xdx,ÒªÇóÎó²î²»³¬¹ý10.
??5cS?a?21?()2sin2?d?0a9. ÎÀÐǹìµÀÊÇÒ»¸öÍÖÔ²,ÍÖÔ²Öܳ¤µÄ¼ÆË㹫ʽÊÇ,ÕâÀïaÊÇÍÖÔ²µÄ°ë³¤Öá,cÊǵØÇòÖÐÐÄÓë¹ìµÀÖÐÐÄ(ÍÖÔ²ÖÐÐÄ)µÄ¾àÀë,¼ÇhΪ½üµØµã¾àÀë,HΪԶµØµã¾àÀë,R?6371¹«ÀïΪµØÇò°ë¾¶,Ôòa?(2R?H?h)/2,c?(H?h)/2.ÎÒ¹úµÚÒ»¿ÅÈËÔìÎÀÐǽüµØµã¾àÀëh?439¹«Àï,Ô¶µØµã¾àÀëH?2384¹«Àï,ÊÔÇóÎÀÐǹìµÀµÄÖܳ¤.
10. Ö¤Ã÷µÈʽ
ËÆÖµ.
nsin?n????33!n2??55!n4??ÊÔÒÀ¾Ýnsin(?/n)(n?3,6,12)µÄÖµ,ÓÃÍâÍÆËã·¨Çó?µÄ½ü
11. ÓÃÏÂÁз½·¨¼ÆËã»ý·Ö
(1) Áú±´¸ñ·½·¨;
?31dyy²¢±È½Ï½á¹û.
(2) Èýµã¼°Îåµã¸ß˹¹«Ê½;
(3) ½«»ý·ÖÇø¼ä·ÖΪËĵȷÖ,Óø´»¯Á½µã¸ß˹¹«Ê½.
f(x)?12. ÓÃÈýµã¹«Ê½ºÍÎåµã¹«Ê½·Ö±ðÇó
ÖµÓÉÏÂ±í¸ø³ö:
1(1?x)2ÔÚx?1.0,1.1ºÍ1.2´¦µÄµ¼ÊýÖµ,²¢¹À¼ÆÎó²î.f(x)µÄ
x f(x) 1.0 0.2500 1.1 0.2268 1.2 0.2066 1.3 0.1890 1.4 0.1736 µÚÎåÕ ³£Î¢·Ö·½³ÌÊýÖµ½â·¨
1. ¾Í³õÖµÎÊÌây??ax?b,y(0)?0·Ö±ðµ¼³öÓÈÀ·½·¨ºÍ¸Ä½øµÄÓÈÀ·½·¨µÄ½üËÆ½âµÄ±í´ïʽ£¬²¢Óë׼ȷ
½â
y?12ax?bx2Ïà±È½Ï¡£
2. ÓøĽøµÄÓÈÀ·½·¨½â³õÖµÎÊÌâ
?y??x?y,0?x?1;??y(0)?1,
È¡²½³¤h=0.1¼ÆË㣬²¢Óë׼ȷ½ây??x?1?2eÏà±È½Ï¡£ 3. ÓøĽøµÄÓÈÀ·½·¨½â
x?y??x2?x?y;??y(0)?0,
È¡²½³¤h=0.1¼ÆËãy(0.5)£¬²¢Óë׼ȷ½ây??e?x?x2?x?1Ïà±È½Ï¡£
4. ÓÃÌÝÐη½·¨½â³õÖµÎÊÌâ
?y??y?0;??y(0)?1,
Ö¤Ã÷Æä½üËÆ½âΪ
n?2?h?yn???,2?h??
²¢Ö¤Ã÷µ±h?0ʱ£¬ËüÔ³õÖµÎÊÌâµÄ׼ȷ½ây?e¡£ 5. ÀûÓÃÓÈÀ·½·¨¼ÆËã»ý·Ö
?x?ÔÚµãx?0.5,1,1.5,2µÄ½üËÆÖµ¡£
x0etdt2
6. È¡h=0.2£¬ÓÃËĽ׾µäµÄÁú¸ñ£¿âËþ·½·¨Çó½âÏÂÁгõÖµÎÊÌ⣺
?y??x?y,0?x?1;? 1£©?y(0)?1, ?y??3y/(1?x),0?x?1;? 2£©?y(0)?1.
7. Ö¤Ã÷¶ÔÈÎÒâ²ÎÊýt£¬ÏÂÁÐÁú¸ñ£¿âËþ¹«Ê½ÊǶþ½×µÄ£º
h?y?y?(K2?K3);n?n?12??K?f(x,y);nn?1?K2?f(xn?th,yn?thK1);???K3?f(xn?(1?t)h,yn?(1?t)hK1).
8. Ö¤Ã÷ÏÂÁÐÁ½ÖÖÁú¸ñ£¿âËþ·½·¨ÊÇÈý½×µÄ£º
h?y?y?(K1?3K3);n?n?14??K1?f(xn,yn);??hhK?f(x?,y?K1);nn?233??K?f(x?2h,y?2hK);nn2?3331£© ? h?y?y?(2K1?3K2?4K3);n?n?19?K?f(xn,yn);??1?hhK?f(x?,y?K1);nn?222??K?f(x?3h,y?3hK).nn2?3442£© ?
9. ·Ö±ðÓöþ½×ÏÔʽÑǵ±Ä·Ë¹·½·¨ºÍ¶þ½×ÒþʽÑǵ±Ä·Ë¹·½·¨½âÏÂÁгõÖµÎÊÌ⣺
y??1?y,y(0)?0,
?xh?0.2,y?0,y?0.181,y?1?ey(1.0)01È¡¼ÆËã²¢Óë׼ȷ½âÏà±È½Ï¡£
10. Ö¤Ã÷½ây??f(x,y)µÄÏÂÁвî·Ö¹«Ê½
yn?1?1h??1?yn??3yn??1)(yn?yn?1)?(4yn24
ÊǶþ½×µÄ£¬²¢Çó³ö½Ø¶ÏÎó²îµÄÊ×Ïî¡£ 11. µ¼³ö¾ßÓÐÏÂÁÐÐÎʽµÄÈý½×·½·¨£º
??b1yn??1?b2yn??2). yn?1?a0yn?a1yn?1?a2yn?2?h(b0yn12. ½«ÏÂÁз½³Ì»¯ÎªÒ»½×·½³Ì×飺
y???3y??2y?0,1£©y(0)?1,y?(0)?1;
y???0.1(1?y2)y??y?0,2£©y(0)?1,y?(0)?0;
3£©
x??(t)??xy??,y(t)??,r?x2?y2,33rr
x(0)?0.4,x?(0)?0,y(0)?0,y?(0)?2. 13. È¡h=0.25£¬Óòî·Ö·½·¨½â±ßÖµÎÊÌâ
?y???y?0;??y(0)?0,y(1)?1.68.
14. ¶Ô·½³Ìy???f(x,y)¿É½¨Á¢²î·Ö¹«Ê½
yn?1?2yn?yn?1?h2f(xn,yn),
ÊÔÓÃÕâÒ»¹«Ê½Çó½â³õÖµÎÊÌâ
?y???1;??y(0)?y(1)?0,
ÑéÖ¤¼ÆËã½âºãµÈÓÚ׼ȷ½â
x2?xy(x)?.2
15. È¡h=0.2Óòî·Ö·½·¨½â±ßÖµÎÊÌâ
?(1?x2)y???xy??3y?6x?3;??y(0)?y?(0)?1,y(1)?2.
µÚÁùÕ ·½³ÌÇó¸ù
21. Óöþ·Ö·¨Çó·½³Ìx?x?1?0µÄÕý¸ù£¬ÒªÇóÎó²î<0.05¡£
2. ÓñÈÀýÇó¸ù·¨Çóf(x)?1?xsinx?0ÔÚÇø¼ä[0,1]ÄÚµÄÒ»¸ö¸ù£¬Ö±µ½½üËÆ¸ùxkÂú×㾫¶È
|f(xk)|?0.005ʱÖÕÖ¹¼ÆËã¡£
323. ΪÇó·½³Ìx?x?1?0ÔÚx0?1.5¸½½üµÄÒ»¸ö¸ù£¬É轫·½³Ì¸Äд³ÉÏÂÁеȼÛÐÎʽ£¬²¢½¨Á¢ÏàÓ¦µÄµü
´ú¹«Ê½¡£
22x?1?1/xk?1kx?1?1/x1£©£¬µü´ú¹«Ê½£»
23x?1?xk?1k2£©x?1?x£¬µü´ú¹«Ê½£»
323£©
x2?1x?1£¬µü´ú¹«Ê½xk?1?1/xk?1¡£
ÊÔ·ÖÎöÿÖÖµü´ú¹«Ê½µÄÊÕÁ²ÐÔ£¬²¢Ñ¡È¡Ò»ÖÖ¹«Ê½Çó³ö¾ßÓÐËÄλÓÐЧÊý×ֵĽüËÆ¸ù¡£ 4. ±È½ÏÇóe?10x?2?0µÄ¸ùµ½ÈýλСÊýËùÐèµÄ¼ÆËãÁ¿£» 1£©ÔÚÇø¼ä[0,1]ÄÚÓöþ·Ö·¨£»
xk2) Óõü´ú·¨xk?1?(2?e)/10£¬È¡³õÖµx0?0¡£
x5. ¸ø¶¨º¯Êýf(x)£¬Éè¶ÔÒ»ÇÐx,f?(x)´æÔÚÇÒ0?m?f?(x)?M£¬Ö¤Ã÷¶ÔÓÚ·¶Î§ÄÚ0???2/MµÄÈÎ
?ÒⶨÊý¦Ë£¬µü´ú¹ý³Ìxk?1?xk??f(xk)¾ùÊÕÁ²ÓÚf(x)µÄ¸ùx¡£
6. ÒÑÖªx??(x)ÔÚÇø¼ä[a,b]ÄÚÖ»ÓÐÒ»¸ù£¬¶øµ±a |??(x)|?k?1£¬ ÊÔÎÊÈçºÎ½«x??(x)»¯ÎªÊÊÓÚµü´úµÄÐÎʽ£¿ ½«x?tgx»¯ÎªÊÊÓÚµü´úµÄÐÎʽ£¬²¢Çóx=4.5£¨»¡¶È£©¸½½üµÄ¸ù¡£ 3?7. ÓÃÏÂÁз½·¨Çóf(x)?x?3x?1?0ÔÚx0?2¸½½üµÄ¸ù¡£¸ùµÄ׼ȷֵx£½1.87938524¡£¬ÒªÇó¼ÆËã ½á¹û׼ȷµ½ËÄλÓÐЧÊý×Ö¡£ 1) ÓÃÅ£¶Ù·¨£» 2£©ÓÃÏҽط¨£¬È¡x0?1,x1?1.9£» 3£©ÓÃÅ×ÎïÏß·¨£¬È¡x0?1,x1?3,x2?2¡£ 8. Óöþ·Ö·¨ºÍÅ£¶Ù·¨Çóx?tgx?0µÄ×îСÕý¸ù¡£ 9. Ñо¿ÇóaµÄÅ£¶Ù¹«Ê½ xk?1?Ö¤Ã÷¶ÔÒ»ÇÐk?1,2,?,xk?1a(xk?),x0?0,2xk aÇÒÐòÁÐx1,x2,?ÊǵݼõµÄ¡£ 10. ¶ÔÓÚf(x)?0µÄÅ£¶Ù¹«Ê½xk?1?xk?f(xk)/f?(xk)£¬Ö¤Ã÷ Rk?(xk?xk?1)/(xk?1?xk?2)2 ?ÊÕÁ²µ½?f??(x)/(2f?(x))£¬ÕâÀïxΪf(x)?0µÄ¸ù¡£ ??11. ÊÔ¾ÍÏÂÁк¯ÊýÌÖÂÛÅ£¶Ù·¨µÄÊÕÁ²ÐÔºÍÊÕÁ²ËÙ¶È£º ??x,x?0;f(x)??????x,x?0; 1) 23??x,x?0;f(x)??23??x,x?0. ?2) 3212. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ìx?a?0£¬µ¼³öÇóÁ¢·½¸ùaµÄµü´ú¹«Ê½£¬²¢ÌÖÂÛÆäÊÕÁ²ÐÔ¡£ 13. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ì f(x)?1?a?02x£¬µ¼³öÇóaµÄµü´ú¹«Ê½£¬²¢Óô˹«Ê½Çó115µÄÖµ¡£ 14. Ó¦ÓÃÅ£¶Ù·¨ÓÚ·½³Ìf(x)?x?a?0ºÍ k??nf(x)?1?a?0nnx£¬·Ö±ðµ¼³öÇóaµÄµü´ú¹«Ê½£¬²¢Çó lim(na?xk?1)/(na?xk)2.15. Ö¤Ã÷µü´ú¹«Ê½ xk?1x(x?3a)?kk23xk?a 2?ÊǼÆËãaµÄÈý½×·½·¨¡£¼Ù¶¨³õÖµx0³ä·Ö¿¿½ü¸ùx£¬Çó lim(a?xk?1)/(a?xk)3.k?? µÚÆßÕ ½âÏßÐÔ·½³Ì×éµÄÖ±½Ó·½·¨ 1. ¿¼ÂÇ·½³Ì×飺 ?0.4096x1?0.1234x2?0.2246x?0.3872x?12??0.3645x1?0.1920x2??0.1784x1?0.4002x2?0.3678x3?0.2943x4?0.4043;?0.4015x3?0.1129x4?0.1550;?0.3781x3?0.0643x4?0.4240;?0.2786x3?0.3927x4??0.2557; (a) Óøß˹ÏûÈ¥·¨½â´Ë·½³Ì×飨ÓÃËÄλСÊý¼ÆË㣩£¬ (b) ÓÃÁÐÖ÷ÔªÏûÈ¥·¨½âÉÏÊö·½³Ì×é²¢ÇÒÓë(a)±È½Ï½á¹û¡£ 2. (a) ÉèAÊǶԳÆÕóÇÒa11?0£¬¾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬AÔ¼»¯Îª ?a11??0Ö¤Ã÷A2ÊǶԳƾØÕó¡£ (b)Óøß˹ÏûÈ¥·¨½â¶Ô³Æ·½³Ì×飺 T?a1?A2? ?0.6428x1?0.3475x2?0.8468x3?0.4127;??0.3475x1?1.8423x2?0.4759x3?1.7321;??0.8468x?0.4759x?1.2147x??0.8621.123? 4. ÉèAΪn½×·ÇÆæÒì¾ØÕóÇÒÓзֽâʽA=LU£¬ÆäÖÐLΪµ¥Î»ÏÂÈý½ÇÕó£¬UΪÉÏÈý½ÇÕó£¬ÇóÖ¤AµÄËùÓÐ˳ÐòÖ÷×Óʽ¾ù²»ÎªÁã¡£ 5. Óɸß˹ÏûÈ¥·¨ËµÃ÷µ±?i?0(i?1,2,?,n?1)ʱ£¬ÔòA=LU£¬ÆäÖÐLΪµ¥Î»ÏÂÈý½ÇÕó£¬U ΪÉÏÈý½ÇÕó¡£ |aii|??|aij|(i?1,2,?,n),6. ÉèA Ϊn½×¾ØÕó£¬Èç¹û j?1j?in³ÆAΪ¶Ô½ÇÓÅÊÆÕó¡£Ö¤Ã÷£ºÈôAÊǶԽÇÓÅÊÆÕó£¬ ¾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬A¾ßÓÐÐÎʽ ?a11??0T?a1?A2?¡£ 7. ÉèAÊǶԳÆÕý¶¨¾ØÕ󣬾¹ý¸ß˹ÏûÈ¥·¨Ò»²½ºó£¬AÔ¼»¯Îª ?a11??0A?(aij)n,A2?(aijÆäÖÐ (2)T?a1?A2?£¬ )n?1; Ö¤Ã÷ £¨1£©AµÄ¶Ô½ÇÔªËØaii?0(i?1,2,?,n); £¨2£©A2ÊǶԳÆÕý¶¨¾ØÕó£» (n)a?aii,(i?1,2,?,n); n£¨3£© £¨4£©AµÄ¾ø¶ÔÖµ×î´óµÄÔªËØ±ØÔÚ¶Ô½ÇÏßÉÏ£» £¨5£©2?i,j?n(2)max|aij|?max|aij|;2?i,j?n £¨6£©´Ó£¨2£©£¬£¨3£©£¬£¨5£©ÍƳö£¬Èç¹û |aij|?1£¬Ôò¶ÔËùÓÐk (k)|aij|?1. 8. ÉèLkΪָ±êΪkµÄ³õµÈÏÂÈý½ÇÕ󣬼´ ?1????1Lk??mk?1,k????mnk???????1????1??£¨³ýµÚkÁжԽÇÔªÏÂÔªËØÍ⣬ºÍµ¥Î»ÕóIÏàͬ£© ~L?IijLkIijÒ²ÊÇÒ»¸öÖ¸±êΪkµÄ³õµÈÏÂÈý½ÇÕ󣬯äÖÐIijΪ³õµÈÅÅÁÐÕó¡£ ÇóÖ¤µ±i,j?kʱ£¬k9. ÊÔÍÆµ¼¾ØÕóAµÄCrout·Ö½âA=LUµÄ¼ÆË㹫ʽ£¬ÆäÖÐLΪÏÂÈý½ÇÕó£¬UΪµ¥Î»ÉÏÈý½ÇÕó¡£ 10. ÉèUx?d£¬ÆäÖÐUΪÈý½Ç¾ØÕó¡£ (a) ¾ÍUΪÉϼ°ÏÂÈý½Ç¾ØÕóÍÆµ¼Ò»°ãµÄÇó½â¹«Ê½£¬²¡Ð´³öËã·¨¡£ (b) ¼ÆËã½âÈý½ÇÐη½³Ì×éUx?dµÄ³Ë³ý·¨´ÎÊý¡£ (c) ÉèUΪ·ÇÆæÒìÕó£¬ÊÔÍÆµ¼ÇóU?1µÄ¼ÆË㹫ʽ¡£ ?111. Ö¤Ã÷£¨a£©Èç¹ûAÊǶԳÆÕý¶¨Õó£¬ÔòAÒ²ÊÇÕý¶¨Õó£» £¨b£©Èç¹ûAÊǶԳÆÕý¶¨Õó£¬ÔòA¿ÉΨһд³ÉA?LL,ÆäÖÐLÊǾßÓÐÕý¶Ô½ÇÔªµÄÏÂÈý½ÇÕó¡£ T12. Óøß˹£Ô¼µ±·½·¨ÇóAµÄÄæÕó£º ?2?3A????1??113. ÓÃ×·¸Ï·¨½âÈý¶Ô½Ç·½³Ì×éAx?b£¬ÆäÖÐ 1?3120?1?07??4?2???15? ?2?1000??1???12?100??0?????A??0?12?10?,b??0?????00?12?1???0????000?12???0?? 14. ÓøĽøµÄƽ·½¸ù·¨½â·½³Ì×é ?2?11??x1??4???1?23??x???5?.???2????31??1???x3????6?? 15. ÏÂÊö¾ØÕóÄÜ·ñ·Ö½âΪLU£¨ÆäÖÐLΪµ¥Î»ÏÂÈý½ÇÕó£¬UΪÉÏÈý½ÇÕ󣩣¿ÈôÄֽܷ⣬ÄÇô·Ö½âÊÇ·ñΨһ£¿ ?123??111??126??,B??221?,C??2515?.A??241??????????467???331???61546?? 16. ÊÔ»®³ö²¿·ÖÑ¡Ö÷ÔªËØÈý½Ç·Ö½â·¨¿òͼ£¬²¢ÇÒÓô˷¨½â·½³Ì×é ?034??x1??1??1?11??x???2????2?????212????x3????3??. 17. Èç¹û·½ÕóA ÓÐ aij?0(|i?j|?t)£¬Ôò³ÆAΪ´ø¿í2t+1µÄ´ø×´¾ØÕó£¬ÉèAÂú×ãÈý½Ç·Ö½âÌõ¼þ£¬ÊÔÍÆ µ¼A?LUµÄ¼ÆË㹫ʽ£¬¶Ôr?1,2,?,n. uri?ari?1£© rkkik?max(1,i?t)r?1?lr?1u (i?r,r?1,?,min(n,r?t))£» lir?(air?2£©18. Éè ikkrk?max(1,i?t)?lu)/urr (i?r?1,?,min(n,r?t)). ?0.60.5?A????0.10.3?£¬ ¼ÆËãAµÄÐз¶Êý£¬Áз¶Êý£¬2-·¶Êý¼°F-·¶Êý¡£ 19. ÇóÖ¤ (a) ||x||??||x||1?n||x||?£¬ 1(b) n||A||F?||A||2?c2||A||F¡£ 20. Éè P?Rn?nnÇÒ·ÇÆæÒ죬ÓÖÉè||x||ΪRÉÏÒ»ÏòÁ¿·¶Êý£¬¶¨Òå ||x||p?||Px||¡£ ÊÔÖ¤Ã÷ ||x||pÊÇRnÉϵÄÒ»ÖÖÏòÁ¿·¶Êý¡£ n?n21. ÉèA?RΪ¶Ô³ÆÕý¶¨Õ󣬶¨Òå ||x||A?(Ax,x)1/2£¬ nÊÔÖ¤Ã÷||x||AΪRÉÏÏòÁ¿µÄÒ»ÖÖ·¶Êý¡£ nTx?R,x?(xx,?,x)12n22. É裬ÇóÖ¤ lim(?||xi||p)1/p?maxxi?||x||?y??i?11?i?nn¡£ Tx23. Ö¤Ã÷£ºµ±ÇÒ¾¡µ±xºÍyÏßÐÔÏà¹ØÇÒy?0ʱ£¬²ÅÓÐ ||x?y||2?||x||2?||y||2¡£ 24. ·Ö±ðÃèÊöRÖУ¨»Í¼£© 2Sv?{x|||x||v?1,x?R2},(v?1,2,?)¡£ 25. Áî ?ÊÇRn£¨»òCn£©ÉϵÄÈÎÒâÒ»ÖÖ·¶Êý£¬¶øPÊÇÈÎÒâ·ÇÆæÒìʵ£¨»ò¸´£©¾ØÕ󣬶¨Òå·¶Êý||x||??||Px||£¬ ?1Ö¤Ã÷||A||??||PAP||¡£ n?nn?n26. Éè||A||s,||A||tΪRÉÏÈÎÒâÁ½ÖÖ¾ØÕóËã×Ó·¶Êý£¬Ö¤Ã÷´æÔÚ³£Êýc1,c2?0£¬Ê¹¶ÔÒ»ÇÐA?RÂú×ã c1||A||s?||A||t?c2||A||s 27. ÉèA?Rn?nTT£¬ÇóÖ¤AAÓëAAÌØÕ÷ÖµÏàµÈ£¬¼´ÇóÖ¤?(AA)??(AA)¡£ TT28. ÉèAΪ·ÇÆæÒì¾ØÕó£¬ÇóÖ¤ 1||A?1||?29. ÉèAΪ·ÇÆæÒì¾ØÕó£¬ÇÒ||A?1?miny?0||A||?||y||?¡£ ||||?A||?1£¬ÇóÖ¤(A??A)?1´æÔÚÇÒÓйÀ¼Æ ||?A||||A?1?(A??A)?1||||A||?.?1||?A||||A||1?cond(A)||A|| cond(A)30. ¾ØÕóµÚÒ»ÐгËÒÔÒ»Êý£¬³ÉΪ ?2?A???1??1??¡£ Ö¤Ã÷µ± ???23ʱ£¬cond(A)?ÓÐ×îСֵ¡£ 1/2TTT31. ÉèAΪ¶Ô³ÆÕý¶¨¾ØÕó£¬ÇÒÆä·Ö½âΪA?LDL?WW£¬ÆäÖÐW?DL£¬ÇóÖ¤ (a) cond(A)2?[cond(?)2]; (b) cond(A2)?cond(?)2cond(?)2. 32. Éè T2?10099?A????9998? ¼ÆËãAµÄÌõ¼þÊý¡£cond(A)v(v?2,?) 33. Ö¤Ã÷£ºÈç¹ûAÊÇÕý½»Õó£¬Ôòcond(A)2?1¡£ 34. ÉèA,B?Rn?nÇÒ ?ΪÉϾØÕóµÄËã×Ó·¶Êý£¬Ö¤Ã÷ cond(AB)?cond(A)cond(B)¡£ µÚ°ËÕ ½â·½³Ì×éµÄµü´ú·¨ 1. Éè·½³Ì×é ?5x1?2x2?x3??12???x1?4x2?2x3?20?2x?3x?10x?323?1 (a) ¿¼²ìÓÃÑſɱȵü´ú·¨,¸ß˹-ÈûµÂ¶ûµü´ú·¨½â´Ë·½³Ì×éµÄÊÕÁ²ÐÔ; (b) ÓÃÑſɱȵü´ú·¨,¸ß˹-ÈûµÂ¶ûµü´ú·¨½â´Ë·½³Ì×é,ÒªÇóµ±||x(k?1)?x(k)||??10?4ʱµü´úÖÕÖ¹£® ?00?A???20??, Ö¤Ã÷:¼´Ê¹||A||1?||A||??1¼¶ÊýI?A?A2???Ak??Ò²ÊÕÁ²£® 2. Éè 3. Ö¤Ã÷¶ÔÓÚÈÎÒâÑ¡ÔñµÄA, ÐòÁÐ 111I,A,A2,A3,A4,?23!4! ÊÕÁ²ÓÚÁ㣮 £´. Éè·½³Ì×é ?a11x1?a12x2?b1;??a21x1?a22x2?b2; (a11,a12?0); µü´ú¹«Ê½Îª 1?(k)(k?1)x?(b1?a12x2);?1a?11??x(k)?1(b?ax(k?1));22211?a22? (k?1,2,?). ÇóÖ¤: ÓÉÉÏÊöµü´ú¹«Ê½²úÉúµÄÏòÁ¿ÐòÁÐ{x(k)}ÊÕÁ²µÄ³äÒªÌõ¼þÊÇ r?a12a21?1.a11a22 5. Éè·½³Ì×é ?x1?0.4x2?0.4x3?1??0.4x1?x2?0.8x3?2?(a) ?0.4x1?0.8x2?x3?3 (b) limAk?A?x1?2x2?2x3?1??x1?x2?x3?1?2x?2x?x?123?1 ÊÔ¿¼²ì½â´Ë·½³Ì×éµÄÑſɱȵü´ú·¨¼°¸ß˹-ÈûµÂ¶ûµü´ú·¨µÄÊÕÁ²ÐÔ¡£ 6. ÇóÖ¤k??µÄ³äÒªÌõ¼þÊǶÔÈκÎÏòÁ¿x£¬¶¼ÓÐ limAkx?Ax.k?? 7. ÉèAx?b£¬ÆäÖÐA¶Ô³ÆÕý¶¨£¬Îʽâ´Ë·½³Ì×éµÄÑſɱȵü´ú·¨ÊÇ·ñÒ»¶¨ÊÕÁ²£¿ÊÔ¿¼²ìϰÌâ5(a)·½³Ì×é¡£ 8. Éè·½³Ì×é 111?x?x?x??143442;??x?1x?1x?1;?243442???1x?1x?x?1;3?41422?111??x1?x2?x4?.42 ?4(a) Çó½â´Ë·½³Ì×éµÄÑſɱȵü´ú·¨µÄµü´ú¾ØÕóB0µÄÆ×°ë¾¶£» (b) Çó½â´Ë·½³Ì×éµÄ¸ß˹£ÈûµÂ¶ûµü´ú·¨µÄµü´ú¾ØÕóµÄÆ×°ë¾¶£» (c) ¿¼²ì½â´Ë·½³Ì×éµÄÑſɱȵü´ú·¨¼°¸ß˹£ÈûµÂ¶ûµü´ú·¨µÄÊÕÁ²ÐÔ¡£ 9. ÓÃSOR·½·¨½â·½³Ì×飨·Ö±ðÈ¡ËɳÚÒò×Ó??1.03,??1,??1.1£© ?4x1?x2?1;???x1?4x2?x3?4;??x?4x??3.3?2 11x??(,1,?)T,?(k)?622ÒªÇóµ±||x?x||??5?10ʱµü´úÖÕÖ¹£¬¾«È·½â²¢ÇÒ¶Ôÿһ¸ö?ֵȷ¶¨µü´ú´Î Êý¡£ 10. ÓÃSOR·½·¨½â·½³Ì×飨ȡ?£½0.9£© ?5x1?2x2?x3??12;???x1?4x2?2x3?20;?2x?3x?10x?3.23?1 (k?1)(k)?4||x?x||?10?ÒªÇóµ±Ê±µü´úÖÕÖ¹¡£ 11. ÉèÓз½³Ì×éAx?b£¬ÆäÖÐAΪ¶Ô³ÆÕý¶¨Õ󣬵ü´ú¹«Ê½ x(k?1)?x(k)??(b?Ax(k)), (k?0,1,2,?) 0???ÊÔÖ¤Ã÷µ± 2?ʱÉÏÊöµü´ú·¨ÊÕÁ²£¨ÆäÖÐ0????(A)??£©¡£ (k?1)12. Óøß˹£ÈûµÂ¶û·½·¨½âAx?b£¬ÓÃxi¼Çx(k?1)µÄµÚi¸ö·ÖÁ¿£¬ÇÒ ri(k?1)?bi??aijxj?1i?1(k?1)j??aijxi(k)j?in¡£ x(a) Ö¤Ã÷ (b) Èç¹û?(k)(k?1)i?x(k)iri(k?1)?ai£» ?x(k)?x?£¬ÆäÖÐx?ÊÇ·½³Ì×éµÄ¾«È·½â£¬ÇóÖ¤£º ?riÆäÖÐ (c) ÉèAÊǶԳƵ쬶þ´ÎÐÍ (k?1)i?1(k?1)i??(k)iri(k?1)?aii ??aij?j?1(k?1)j??aij?i(k)j?in¡£ Q(?(k))?(A?(k),?(k)) Q(?(k?1))?Q(?(k))???j?1n(rj(k?1))2ajj¡£ (0)Ö¤Ã÷ (d) ÓÉ´ËÍÆ³ö£¬Èç¹ûAÊǾßÓÐÕý¶Ô½ÇÔªËØµÄ·ÇÆæÒì¾ØÕó£¬ÇÒ¸ß˹£ÈûµÂ¶û·½·¨¶ÔÈÎÒâ³õʼÏòÁ¿xÁ²µÄ£¬ÔòAÊÇÕý¶¨Õó¡£ 13. ÉèAÓëBΪn½×¾ØÕó£¬AΪ·ÇÆæÒ죬¿¼Âǽⷽ³Ì×é ÊÇÊÕ Az1?Bz2?b1,Bz1?Az2?b2, nz,z,d,d?R1212ÆäÖС£ (a) ÕÒ³öÏÂÁеü´ú·½·¨ÊÕÁ²µÄ³äÒªÌõ¼þ (m)(m?1)Az1(m?1)?b1?Bz2,Az2?b2?Bz1(m)(m?0); (b) ÕÒ³öÏÂÁеü´ú·½·¨ÊÕÁ²µÄ³äÒªÌõ¼þ (m)(m?1)Az1(m?1)?b1?Bz2,Az2?b2?Bz1(m?1)(m?0); ±È½ÏÁ½¸ö·½·¨µÄÊÕÁ²ËÙ¶È¡£ 14. Ö¤Ã÷¾ØÕó ?1aa??A??a1a????aa1?? 111?a?1??a?2ÊÇÊÕÁ²µÄ¡£ ¶ÔÓÚ2ÊÇÕý¶¨µÄ£¬¶øÑſɱȵü´úÖ»¶Ô2??51?02A???3?1??0315. Éè3?04??2?1??07?£¬ÊÔ˵Ã÷AΪ¿ÉÔ¼¾ØÕó¡£ (k?1)216. ¸ø¶¨µü´ú¹ý³Ì£¬x?Cx(k)?g£¬ÆäÖÐC?Rn?n(k?0,1,2,?)£¬ÊÔÖ¤Ã÷£ºÈç¹ûCµÄÌØÕ÷Öµ ?i(C)?0(i?1,2,?)£¬Ôòµü´ú¹ý³Ì×î¶àµü´ún´ÎÊÕÁ²ÓÚ·½³Ì×éµÄ½â¡£ 17. »³öSORµü´ú·¨µÄ¿òͼ¡£ 18. ÉèAΪ²»¿ÉÔ¼Èõ¶Ô½ÇÓÅÊÆÕóÇÒ0???1£¬ÇóÖ¤£º½âAx?bµÄSOR·½·¨ÊÕÁ²¡£ 19. ÉèAx?b£¬ÆäÖÐAΪ·ÇÆæÒìÕó¡£ (a) ÇóÖ¤AAΪ¶Ô³ÆÕý¶¨Õó£» T2cond(AA)?(cond(A))22(b) ÇóÖ¤¡£ T µÚ¾ÅÕ ¾ØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿¼ÆËã 1. ÓÃÃÝ·¨¼ÆËãÏÂÁоØÕóµÄÖ÷ÌØÕ÷Öµ¼°¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿£º 3?2??7?3?43????463?A1??34?1A?2??????31???2?13?? , (b) ?3?, (a) µ±ÌØÕ÷ÖµÓÐ3λСÊýÎȶ¨Ê±µü´úÖÕÖ¹¡£ 2. ·½ÕóT·Ö¿éÐÎʽΪ ?T11T12?T1n???T?T222n?T???????Tnn?, ?ÆäÖÐTii(i?1,2,?,n)Ϊ·½Õó£¬T³ÆÎª¿éÉÏÈý½ÇÕó£¬Èç¹û¶Ô½Ç¿éµÄ½×ÊýÖÁ¶à²»³¬¹ý2£¬Ôò³ÆT Ϊ׼Èý½ÇÐÎÐÎʽ£¬ÓÃ?(T)¼Ç¾ØÕóTµÄÌØÕ÷Öµ¼¯ºÏ£¬Ö¤Ã÷ ?(T)???(Tii).i?1n 3. ÀûÓ÷´ÃÝ·¨Çó¾ØÕó ?621??231?????111?? µÄ×î½Ó½üÓÚ6µÄÌØÕ÷Öµ¼°¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿¡£ 4. Çó¾ØÕó ?400??031?????013?? ÓëÌØÕ÷Öµ4¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿¡£ 5. ÓÃÑſɱȷ½·¨¼ÆËã ?1.01.00.5??A??1.01.00.25????0.50.252.0?? µÄÈ«²¿ÌØÕ÷Öµ¼°ÌØÕ÷ÏòÁ¿£¬Óô˼ÆËã½á¹û¸ø³öÀý3µÄ¹ØÓÚpµÄ×îÓÅÖµ¡£ 6. (a)ÉèAÊǶԳƾØÕ󣬦˺Íx(||x||2?1)ÊÇAµÄÒ»¸öÌØÕ÷Öµ¼°ÏàÓ¦µÄÌØÕ÷ÏòÁ¿£¬ÓÖÉèPΪһ¸öÕý½»Õó£¬Ê¹ Px?e1?(1,0,?,0)T Ö¤Ã÷B?PAPµÄµÚÒ»Ðк͵ÚÒ»ÁгýÁ˦ËÍâÆäÓàÔªËØ¾ùΪÁã¡£ (b)¶ÔÓÚ¾ØÕó T?2102??A??105?8????2?811??, ?212?x??,,??333?ÊÇÏàÓ¦ÓÚ9µÄÌØÕ÷ÏòÁ¿£¬ÊÔÇóÒ»³õµÈ·´ÉäÕóP£¬Ê¹Px?e1£¬²¢¼ÆËã¦Ë=9ÊÇÆäÌØÕ÷Öµ£¬ TB?PAPT¡£ 7. ÀûÓóõµÈ·´ÉäÕó½« ?134??A??312????421?? Õý½»ÏàËÆÔ¼»¯Îª¶Ô³ÆÈý¶Ô½ÇÕó¡£ 8. ÉèA?Rn?n(2)a?0µÄÆ½ÃæÐýתÕó£¬ÊÔÍÆµ¼¼ÆËãPijAµÚiÐУ¬µÚjÐÐÔªa,aPiji1j1£¬ÇÒ²»È«ÎªÁ㣬Ϊʹj1TAPijËØ¹«Ê½¼°µÚiÁУ¬µÚjÁÐÔªËØµÄ¼ÆË㹫ʽ¡£ 9. ÉèAn?1ÊÇÓɺÀ˹ºÉ¶ûµÂ·½·¨µÃµ½µÄ¾ØÕó£¬ÓÖÉèyÊÇAn?1µÄÒ»¸öÌØÕ÷ÏòÁ¿¡£ 1P2?Pn?2y£» (a)Ö¤Ã÷¾ØÕóA¶ÔÓ¦µÄÌØÕ÷ÏòÁ¿ÊÇx?P(b)¶ÔÓÚ¸ø³öµÄyÓ¦ÈçºÎ¼ÆËãx£¿ 10. ÓôøÎ»ÒƵÄQR·½·¨¼ÆËã ?120??310???121?A??2?11B????????013??, (b) ?011?? (a) È«²¿ÌØÕ÷Öµ¡£ 11. ÊÔÓóõµÈ·´ÉäÕóA·Ö½âΪQR£¬ÆäÖÐQΪÕý½»Õó£¬RΪÉÏÈý½ÇÕó£¬ 1??11?A??2?1?1????2?45??¡£ ÊýÖµ·ÖÎöϰÌâ¼ò´ð £¨ÊʺϿγ̡¶ÊýÖµ·½·¨A¡·ºÍ¡¶ÊýÖµ·½·¨B¡·£© µÚÒ»Õ Ð÷ÂÛϰÌâ²Î¿¼´ð°¸ ?(x*)1£® ¦Å£¨lnx£©¡Ö nxn*??r(x*)??¡£ n?1?r(x)?2£® ?(x)x*n?nx*?(x*)nx*n?(x*)??0.02n*x¡£ *****xxxxx123453£® ÓÐ5λÓÐЧÊý×Ö£¬ÓÐ2λÓÐЧÊý×Ö£¬ÓÐ4λÓÐЧÊý×Ö£¬ÓÐ5λÓÐЧÊý×Ö£¬ÓÐ 2λÓÐЧÊý×Ö¡£ ******?4?3?3?3?(x?x?x)??(x)??(x)??(x)?0.5?10?0.5?10?0.5?10?1.05?101241244£® ************?(x1x2x3)?x2x3?(x1)?x1x3?(x2)?x1x2?(x3)?0.214790825**x2x21**?(*)?*?(x2)?*2?(x4)?8.855668?10?6x4x4x4¡£ ?r(R)??r(35£® 3V)?4?31?(V)/236?V33V1?(V)1???r(V)?0.0033334?3V3¡£ 6£® ?(Y100)?100?111??10?3??10?310022¡£ 7£® x1?28?783?55.982£¬ x2?28?783?128?783?1?0.0178655.982¡£ 8£® ???N1?dx??arctgN1?x22 1?1?(x)??(S)?S2?(S)?0.00529£® ¡£ 10£® gt?(t)2?(t)0.2?r(S)???12ttgt?(S)?gt?(t)?0.1gt£¬2£¬¹ÊtÔö¼ÓʱSµÄ¾ø¶ÔÎó²îÔö ¼Ó£¬Ïà¶ÔÎó²î¼õС¡£ 11£® 12£® ?(y10)?1010?(y0)??10812£¬¼ÆËã¹ý³Ì²»Îȶ¨¡£ 62?1.4£¬Ôòf1?(2?1)?0.004096£¬ f?(2?1)6?0.005051£¬Èç¹ûÁî f2?1?0.0052336(2?1)£¬ f3?(3?22)3?0.008£¬ f4?1?0.0051253(3?22)£¬ f5?99?702?1£¬f4µÄ½á¹û×îºÃ¡£ f(30)??4.094622£¬¿ªÆ½·½Ê±ÓÃÁùλº¯Êý±í¼ÆËãËùµÃµÄÎó²îΪ 13£® ???10?412£¬·Ö±ð´ú 22f(x)?ln(x?x?1),f(x)??ln(x?x?1)ÖмÆËã¿ÉµÃ12ÈëµÈ¼Û¹«Ê½ ?(f1)?ln(1??x?x2?1)?14?(x?x2?1)??60??10??3?10?2x?x2?1?3£¬ ?(f2)?ln(1??x?x2?1)??x?x2?1?11??10?4?8.33?10?7602¡£ 14£® ·½³Ì×éµÄÕæ½âΪ x1?1000000000999999998?1.000000,x2??1.000000999999999999999999£¬¶øÎÞÂÛÓ÷½ ³ÌÒ»»¹ÊÇ·½³Ì¶þ´úÈëÏûÔª¾ù½âµÃx1?1.00,x2?1.00£¬½á¹ûÊ®·Ö¿É¿¿¡£ ?tanc?c?15£® ?sbsinc?a?asinc?b?abcosc?c?a?b?c????sabsincabc µÚ¶þÕ ²åÖµ·¨Ï°Ìâ²Î¿¼´ð°¸ Vn(x)??(x?xi)i?0n?11. 0?j?i?n?1?(xi?xj)£» iVn?1(x0,x1,?,xn?1)?L2(x)?0??0?j?i?n?1?(x?xj). 2. (x?1)(x?2)(x?1)(x?2)(x?1)(x?1)?(?3)??4?(1?1)(1?2)(?1?1)(?1?2)(2?1)(2?1) 5237x?x?623. 3. ÏßÐÔ²åÖµ£ºÈ¡x0?0.5,x1?0.6,y0??0.693147,y1??0.510826£¬Ôò ln0.54?L1(0.54)?y0?y1?y0?(0.54?x0)??0.620219x1?x0£» ¶þ´Î²åÖµ£ºÈ¡ x0?0.4,x1?0.5,x2?0.6,y0??0.916291,y1??0.693147,y2??0.510826£¬Ôò ln0.54?L2(0.54) ?y0?(0.54?x0)(0.54?x2)(0.54?x0)(0.54?x1)(0.54?x1)(0.54?x2)?y1??y2?(x0?x1)(x0?x2)(x1?x0)(x1?x2)(x2?x0)(x2?x1) £½£0.616707 . 4. R1(x)?f(x)?L1(x)?|R1(x)|?1f??(?)(x?x0)(x?x1)2£¬ÆäÖÐ??[x0,x1]. ËùÒÔ×ÜÎó²î½ç 1max|cos??(x)|?max|(x?x0)(x?x1)|x0?x?x12x0?x?x1 2(x1?x0)21?11???8??1???????1.06?10248?60180? . 5. x?x0?l2(x)?(x?x0)(x?x1)(x?x3)(x2?x0)(x2?x1)(x2?x3) µ± 4?7?h3 ʱ£¬È¡µÃ×î´óÖµ max|l2(x)|?10?7727 . x0?x?x3 k6. i) ¶Ôf(x)?x,(k?0,1,?,n)ÔÚx0,x1,?,xn´¦½øÐÐn´ÎÀ¸ñÀÊÈÕ²åÖµ£¬ÔòÓÐ xk?Pn(x)?Rn(x) ??lj(x)xkj?i?0n1f(n?1)(?)(x?x0)?(x?xn)(n?1)! ÓÉÓÚf(n?1)(?)?0£¬¹ÊÓÐi?0?lnjk(x)xkj?x. k ii) ¹¹Ô캯Êýg(x)?(x?t),ÔÚx0,x1,?,xn´¦½øÐÐn´ÎÀ¸ñÀÊÈÕ²åÖµ£¬ÓÐ nLn(x)??(xj?t)klj(x)i?0. g(n?1)(?)n(x?t)?Ln(x)?(x?xj)?(n?1)!j?0²åÖµÓàÏîΪ £¬ k(n?1)g(?)?0,(k?1,2,?,n).¹ÊÓÐ ÓÉÓÚ n(x?t)?Ln(x)??(xj?t)klj(x).ki?0 Áît?x,¼´µÃ ?(xi?0nj?t)klj(x)?0. 7. ÒÔa, bÁ½µãΪ²åÖµ½Úµã×÷f(x)µÄÒ»´Î²åÖµ¶àÏîʽ L1(x)?f(a)?f(b)?f(a)(x?a)b?a£¬ ¾ÝÓàÏÀí£¬ f(x)?L1(x)?1f??(?)(x?a)(x?b),??[a,b]2£¬ ÓÉÓÚf(a)?f(b)?0,¹Ê |f(x)?L1(x)|?|f(x)|?R2(x)?11max|f??(x)|max|(x?a)(x?b)|?(b?a)2max|f??(x)|.a?x?ba?x?b2a?x?b8 8. ½Ø¶ÏÎó²î 1?e(x?x0)(x?x1)(x?x2),??[?4,4].6 x?x1?3h3ʱȡµÃ×î´óÖµ ÆäÖÐ x0?x1?h,x2?x1?h, Ôò ?4?x?4max|(x?x0)(x?x1)(x?x2)|?23?h39 . ÓÉÌâÒ⣬ |R2(x)|?142e?(3?h3)?10?6,69 ËùÒÔ£¬h?0.006. n?1n2n?2n?1n?1nn9. ?yn?2?2, ?yn?(2?2)?(2?2)?2, Ôò¿ÉµÃ ?4yn??2(?2yn)?2n. ?yn?2n?1/2?2n?1/2£¬ ?2yn?(2n?1?2n)?(2n?2n?1)?2n?1£¬Ôò¿ÉµÃ ?4yn??2(?2yn)?2n?2. 10. Êýѧ¹éÄÉ·¨Ö¤ µ±k?1ʱ£¬?f(x)?f(x?h)?f(x)Ϊm£1´Î¶àÏîʽ£» k?f(x)(0?k?m)ÊÇm-k ´Î¶àÏîʽ£¬ÉèΪg(x)£¬Ôò ¼ÙÉè ?k?1f(x)?g(x?h)?g(x)Ϊm-(k+1)´Î¶àÏîʽ£¬µÃÖ¤¡£ 11. ÓÒ?fk(gk?1?gk)?gk?1(fk?1?fk)?fk?1gk?1?fkgk?×ó 12. ?fk?0n?1k?gk?f0g1?f0g0?f1g2?f1g1???fn?1gn?fn?1gn?1,?fk?f1g1?f0g1?f2g2?f1g2???fngn?fn?1gn.2 ?gk?0n?1k?1 13. ??yj?0n?1j ?(y2?y1)?(y1?y0)?(y3?y2)?(y2?y1)???(yn?1?yn)?(yn?yn?1) ?(yn?1?yn)?(y1?y0)??yn??y0 . 14. ÓÉÓÚx1,x2,?,xnÊÇf(x)µÄn¸ö»¥ÒìµÄÁãµã£¬ËùÒÔ f(x)?a0(x?x1)(x?x2)?(x?xn) ?a0?(x?xi)?a0(x?xj)?(x?xi),i?1i?1i?jnn ¶Ôf(x)Ç󵼵à ?n?nf?(x)?a0??(x?xi)?(x?xj)(?(x?xi))???i?0?i?1??i?j?i?j?£¬ f?(xj)?a0?(xj?xi)nÔò i?1i?j£¬ ?j?1n1?f?(xj)a0xkj?j?1nxkj?(xi?1i?jn.?xi) j?0,0?k?n?2,(n?1)g(x)??kg(x)?x,?(n?1)!,k?n?1. ¼ÇkÔò ÓÉÒÔÉÏÁ½Ê½µÃ ?j?1n1?f?(xj)a0xkj?j?1ngk(xj)?(xi?1i?jn?j?xi)1gk[x1,x2,?,xn]a0 (n?1)(?)?0,0?k?n?2,1gk????1a0(n?1)!?a0,k?n?1. 15. i) F[x0,x1,?,xn]??j?0nF(xj)(xj?x0)?(xj?xj?1)(xj?xj?1)?(xj?xn) c?f(xj)?c?f[x0,x1,?,xn] ii) Ö¤Ã÷ͬÉÏ¡£ ??j?0n(xj?x0)?(xj?xj?1)(xj?xj?1)?(xj?xn). f(7)(?)7!f[2,2,?,2]???1;7!7!16. 017f(8)(?)f[2,2,?,2]??0.7! 018???RR(x)?f(x)?p(x)?0,jj17. 3j 3(xj)?f(xj)?p(xj)?0,j?k,k?1. ¼´xk,xk?1¾ùΪR3(x)µÄ¶þÖØÁãµã¡£Òò¶øÓÐÐÎʽ£º R3(x)?K(x)(x?xk)2(x?xk?1)2. 22×÷¸¨Öúº¯Êý?(t)?f(t)?p(t)?K(x)(t?xk)(t?xk?1). Ôò ?(xk)?0,?(x)?0,?(xk?1)?0,??(xk)?0,??(xk?1)?0. ÓÉÂÞ¶û¶¨Àí£¬´æÔÚ?1?(xk,x),?2?(x,xk?1),ʹµÃ ??(?1)?0,??(?2)?0. ÀàËÆÔÙÓÃÈý´ÎÂÞ¶û¶¨Àí£¬´æÔÚ??(?1,?2)?(xk,xk?1),ʹµÃ ?(4)(?)?0, ÓÖ ?(4)(t)?f(4)(t)?4!K(x), (4)¿ÉµÃ K(x)?f(?)4!, (4)22¼´ R3(x)?f(?)(x?xk)(x?xk?1)4!.,??(xk,xk?1). 18. ²ÉÓÃÅ£¶Ù²åÖµ£¬×÷¾ù²î±í£º xi f(xi) Ò»½×¾ù²î ¶þ½×¾ù²î 0 1 2 0 1 1 1 0 -1/2 p(x)?p(x0)?(x?x0)f[x0,x1]?(x?x0)(x?x1)f[x0,x1,x2] ?(A?Bx)(x?x0)(x?x1)(x?x2) ?0?x?x(x?1)(?1/2)?(A?Bx)x(x?1)(x?2) 31A??,B?,44 ÓÖÓÉ p?(0)?0,p?(1)?1, µÃ x2p(x)?(x?3)2.4ËùÒÔ 19. ¼Ç h?b?a,xk?a?kh.n Ôò ?n(x)?f(xi)x?xi?1x?xi?f(xi??1),x?[xi,xi?1].xi?xi?1xi?1?xi ÒòΪf(x)?C[a,b]£¬ËùÒÔf(x)ÔÚ[a,b]ÉÏÒ»ÖÂÁ¬Ðø¡£ µ±n?Nʱ£¬ a?x?bh?b?a??n£¬´ËʱÓÐ 0?i?n?1xi?x?xi?1max|f(x)??n(x)|?maxmax|f(x)??n(x)| ?x?xx?xi??maxmaxf(x)??f(xi)i?1?f(xi?1)?0?i?n?1xi?x?xi?1xi?1?xixi?1?xi?? ?maxmax[f(x)?f(xi)]0?i?n?1xi?x?xi?1xi?1?xx?xi?[f(x)?f(xi?1)]xi?1?xixi?1?xi ?maxmax?0?i?n?1xi?x?xi?1xi?1?xx?xi????.xi?1?xixi?1?xi Óɶ¨ÒåÖªµ±n??ʱ£¬?n(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²ÓÚf(x)¡£ 20. Ih(x)ÔÚÿ¸öÐ¡Çø¼ä[xk,xk?1]ÉϱíʾΪ Ih(x)?x?xk?1x?xkfk?fk?1,(xk?x?xk?1).xk?xk?1xk?1?xk ¼ÆËã¸÷ÖµµÄC³ÌÐòÈçÏ£º #include\#include\float f(float x) { return(1/(1+x*x)); } float I(float x,float a,float b) { return((x-b)/(a-b)*f(a)+(x-a)/(b-a)*f(b)); } void main() { int i; float x[11],xc,xx; x[0]=-5; printf(\ for(i=1;i<=10;i++) { x[i]=x[i-1]+1; printf(\ } for(i=0;i<10;i++) { xc=(x[i]+x[i+1])/2; I(xc,x[i],x[i+1]); printf(\ } for(i=0;i<10;i++) { xx=(x[i]+x[i+1])/2; f(xx); printf(\ } } 21. Ih(x)ÔÚÿ¸öÐ¡Çø¼ä[xk,xk?1]ÉÏΪ Ih(x)?x?xk?12x?xk2xk?xk?1?(xk?1?xk)x?xkxk?1.xk?xk?1xk?1?xk 2(xk?1?xk)2h2|R(x)|?|Ih(x)?f(x)|?|x?(xk?1?xk)x?xkxk?1|??.44 3?f(x)?4x, ÔòIh(x)ÔÚÿ¸öÐ¡Çø¼ä[xk,xk?1]ÉϱíʾΪ 22. ?x?xk?1?Ih(x)???x?x??k?1??k22?x?xk?1?2??xk?1?xk??4?x?xk??xk???x?xk??k?12????2?x?xk?1?4??1?2?x?x??xk?1kk?1???x?xk?1??x?xk3???4??(x?x)x?4?kk?x?x??x?xk?1?k?k?k?1|R(x)|?|f(4)?3?(x?x)xk?1k?1.?? (?)(x?xk)2(x?xk?1)2/4!| xk?1?xkh42xk?1?xk2?4!?(?xk)(?xk?1)4!?.2216 23. h1?x2?x1?0.05, h2?x3?x2?0.09, h3?x4?x3?0.06, h4?x5?x4?0.08. ?i??i?hi?1hi?hi?1 ?yi?1?yiyi?yi?1?6?????hi?hi?1?hi?1hi? ÔòÈý´ÎÑùÌõ²åÖµº¯Êý±í´ïʽΪ Si(x)?mi?1mymym(xi?x)3?i(x?xi?1)3?(i?1?i?1hi)(xi?x)?(i?ihi)(x?xi?1)6hi6hihi6hi6i) ÓÉ S?(0.25)?1.0000,S?(0.53)?0.6868£¬µÃ ?1?0.6429,?2?0.4,?3?0.5714 ?0?6(f[x0,x1]?1)??0.276£¬?1??4.3157,?2??3.264,?3??2.43 ?4?6(0.6868?f[x3,x4])??0.1692 ¹ØÓÚm0,m1,m2,m3,m4µÄ·½³Ì×éΪ 2f(x)?C[a,b],ËùÒÔ 24. i) ÒòΪ ÓÒ£½?abab[f??(x)?S??(x)]dx?2?S??(x)[f??(x)?S??(x)]dxa2b ??{[f??(x)?S??(x)]2?2S??(x)[f??(x)?S??(x)]}dx??(f??(x)2?S??(x)2)dxab £½×ó¡£ ii) ÓÉÓÚS(x)ΪÈý´Îº¯Êý£¬¹ÊS???(x)Ϊ³£Êý£¬ÓÖf(xi)?S(xi)£¬Ôò ?xi?1xi[f?(x)?S?(x)]dx?0b£¬ËùÒÔ nxi?1?aS??(x)[f??(x)?S??(x)]dx???i?0xiS??(x)[f??(x)?S??(x)]?S???(x)[f?(x)?S?(x)]dx ??[S??(x)(f??(x)?S??(x))?S???(x)(f?(x)?S?(x))]dxab ?S???(b)[f?(b)?S?(b)]?S???(a)[f?(a)?S?(a)]¡£ µÚÈýÕ º¯Êý±Æ½üÓë¼ÆËãϰÌâ²Î¿¼´ð°¸ 1. (a) Çø¼ä±ä»»¹«Ê½Îª x'?(b?a)x?a,x?x'?ab?a£¬´úÈëÔ¹«Ê½¿ÉµÃÐÂÇø¼äÀïµÄ²®¶÷˹̹¶àÏî kx?akkBn(f,x)??f((b?a)?a)Pk(),Pk(x)?Cnx(1?x)n?knb?ak?0ʽΪ; B1(f,x)?2x,B3(f,x)?3x(1?2x)?2n63x2(b) ????2(1?2x?)?8x3?3£¬ÏàÓ¦µÄÂó¿ËÀÍÁÖ¼¶Êý·Ö±ð R1(x)?13??0.64596448£¬ Ϊ 13P(x)?x,P(x)?x?x136£¬²¿·ÖºÍÎó²îÔòΪ R3(x)?1?5?0.07969263840£¬´óÓÚ²®¶÷˹̹¶àÏîʽµÄÎó²î¡£ m?m?Pk(x)??k?0k?0nnnkf()Pk(x)?Bn(f,x)?M?Pk(x)?Mnk?0£¬µ±f(x)?x2. m?f(x)?M£¬¹Ê nnkkkn?kk?1k?1Bn(f,x)??Cnx(1?x)?x?Cn(1?x)(n?1)?(k?1)?x?1xk?0nk?1ʱ£¬¡£ 3. sin4x?0?1£¬¶ÔÈÎÒâ²»³¬¹ý6´ÎµÄ¶àÏîʽg(x)£¬ÔÚ x?(2k?1)?,k?1,?,88ʱ£¬ÈôÓÐ g(x)?sin4x?10,2??ÉÏÖÁÉÙÓÐ7¸öÁãµã£¬ÕâÓëg(x)²»³¬¹ý6´Îì¶Ü£¬ËùÒÔ£¬Ôòg(x)ÔÚ?g(x)?sin4x?1£¬g(x)?0¾ÍÊÇËùÇó×î¼ÑÒ»Ö±ƽü¶àÏîʽ¡£ 4. ÉèËùÇóΪg(x)?c£¬ ?(f,g)?max(M?c,m?c),M?maxf(x),m?minf(x)a?x?ba?x?b£¬ÓÉ47Ò³¶¨ Àí4¿ÉÖªg(x)ÔÚ?a,b?ÉÏÖÁÉÙÓÐÁ½¸öÕý¸º½»´íµÄÆ«²îµã£¬Ç¡ºÃ·Ö±ðΪf(x)µÄ×î´óÖµºÍ×î 11g(x)?(M?m)M?c??(m?c),c?(M?m)22Сֵ´¦£¬¹ÊÓÉ¿ÉÒÔ½âµÃ¼´ÎªËùÇó¡£ x?3a3a33a,x?1()?a()?a?133£¬¹Ê3£¬½â·½³Ì¿É 5. Ôº¯ÊýÓëÁãµÄÆ«²î¼«´óÖµµã·Ö±ðΪ µÃ³öΨһ½â a1?2a?34¡£ coxs?26. ??0.636620£¬¹Ê ?£¬µÃ x2?arccos2??0.880689,f(x2)?0.771178£¬ a0?f(x2)x?a12?0.10525722£¬¹ÊËùÇó×î¼ÑÒ»´Î±Æ½ü¶àÏîʽΪ P1(x)?0.636620x?0.105257£¬ÓÖÒòΪÁ½¸öÆ«²îµã±ØÔÚÇø¼ä¶Ëµã£¬¹ÊÎó²îÏÞΪ 0?x?maxsinx?P1(x)?P1(0)?0.105257?2¡£ x5f(x2)?1.71828£¬ÔòÓÐ7. a1?e?1?1.71828£¬¹ÊÓÉe2?e?1¿ÉÒÔ½âµÃx2?0.54132£¬ a0?1?f(x2)x?a12?0.89406722£¬¹ÊËùÇó×î¼ÑÒ»´Î±Æ½ü¶àÏîʽΪ P1(x)?1.71828x?0.894067¡£ 8. ÇбÈÑ©·ò¶àÏîʽÔÚ??1,1?É϶ÔÁãÆ«²î×îС£¬ËùÇóº¯Êý±ØÎªÇбÈÑ©·ò¶àÏîʽµÄ³£Êý±¶£¬ 111r??p(x)?T2(x)?x2?2¡£ 22£¬½âµÃΨһ½â 9. ×÷±ä»» x?11153119?tg(t)?t4?t3?t2?t?22´úÈëf(x)µÃ1682816£¬Ôòg(t)ÔÚ??1,1?ÉϵÄÈý´Î ×î¼Ñ±Æ½ü¶àÏîʽΪ S(t)?g(t)?15251173T3(t)?t3?t2?t?1288168128£¬×÷Äæ±ä»»t?2x?1´úÈë P(x)?5x3?521129x?x?44128¡£ S(t)£¬Ôòf(x)ÔÚ?0,1?ÉϵÄÈý´Î×î¼Ñ±Æ½ü¶àÏîʽΪ ***2T(x)?T(2x?1)?1T(x)?T(2x?1)?2x?1T(x)?T(2x?1)?8x?8x?1£¬00112210. £¬£¬ T3*(x)?T3(2x?1)?32x3?48x2?18x?1£¬ÆäÖÐx??0,1?¡£ 11. ?1*Tn*(x)Tm(x)0x?x2dx??1Tn(2x?1)Tm(2x?1)x?x20dx??12Tn(x)Tm(x)dx2?12Tn*(x)??1?x£¬¹ÊÕý½»¡£ 112. ÓÃT4(x)µÄ4¸öÁãµã xk?cos2k?1?(k?1,2,3,4)8×ö²åÖµ½Úµã¿ÉÇóµÃÈý´Î½üËÆ×î¼Ñ±Æ½ü¶à 23L(x)??0.0524069?0.855066x?0.0848212x?0.0306032xÏîʽΪ3¡£ x???1,1?¡£ÓÉÀ¸ñÀÊÈÕ²åÖµµÄÓàÏî±í´ï¹«Ê½¿ÉµÃ³ö13. f(x)?e£¬ÔòÓÐf(x)?e£¬ÆäÖÐ xnx?1f(x)?Ln(x)fn?1(?)e?e???n?Tn?1(x)(n?1)!2n(n?1)!2n£¬(n?1)!2Áî ,?n?n(n1)!2?en£¬Ôò´ýÖ¤²»µÈʽ³É Á¢£¬µÃÖ¤¡£ 14. ÓÉÌ©ÀÕ¼¶ÊýÏîÊý½ÚÔ¼£¬ÔÚ??1,1?ÉÏÓÐ ?(x)?M5,3(x)?1511651T4(x?)T5(x)3848384016£¬¼´ M5,3(x)??(x)?1511651183321219931101T4(x)?T5(x)??x?x?x?3848384016102412840961096ÆäÖÐÎó²îÏÞ 151165131???0.0075683638483840164096¡£ Ϊ?1?x?1max?(x)?M5,3(x)?115115f(x)?sinx?x?x3?x??P5(x)?x?x3?x61206120Ϊf(x)µÄ½üËÆ£¬Îó²îÏÞΪ15. £¬È¡ maxf(x)?P5(x)?1?0.0001984137!£¬ÔÙ¶ÔÃݼ¶ÊýµÄÏîÊý½øÐнÚÔ¼¾Í¿ÉÒԵõ½Ôº¯ÊýµÄ3 ?1?x?1´Î±Æ½ü¶àÏîʽ M5(x?),3115P(5?x)T5(?x)?312016383?x32£¬Æä3Îó84²îÏÞΪ ?1?x?1maxf(x)?M5,3(x)?111??0.0007192467!12016£¬¼´ÎªËùÇó *?a,a??Ff(x)16. µ±ÎªÉÏµÄÆæº¯Êýʱ£¬Éèn(x)ΪԺ¯ÊýµÄ×î¼Ñ±Æ½ü¶àÏîʽ£¬Ôò Fn*(x)?f(x)?En****?F(?x)?f(x)?F(?x)?f(?x)?En?F(?x)nn£¬¶ÔnÓУ¬ËùÒÔ?Fn(?x)Ò² ***?F(?x)ÊÇÆæº¯?F(?x)?F(x)nnnÊÇ×î¼Ñ±Æ½ü¶àÏîʽ£¬ÓÉ×î¼Ñ±Æ½ü¶àÏîʽµÄΨһÐÔ£¬£¬¼´ Êý¡£Í¬Àí¿ÉÖ¤£¬µ±f(x)Ϊ??a,a?ÉϵÄżº¯Êýʱ£¬×î¼Ñ±Æ½ü¶àÏîʽFn(x)Ò²ÊÇżº¯Êý¡£ *?17. ?20?ax?b?sinx?dx?a?2?324a?2?2b?2?24ab?2a?2b??4£¬ÎªÊ¹¾ù·½Îó²î×îС£¬ÔòÓÐ,b?b?31218. (a) ?24b?2?0,?24baa??b?2?0£¬½âµÃ £¬ a?96?24?8??24?3?2¡£ £¬cΪ³£Êý£¬ (f,g)?(g,f)??f'(x)g'(x)dxba(cf,g)?c(f,g)?c?f'(x)g'(x)dxab(f1?f2,g?)f(1g,?)fg(?,?)f2ʱ£¬(f,f)?0,²»Âú×㶨Ò壬ËùÒÔ x1g'x(dx)??'(f)x2gxdx'((f),f')()?0a£¬£¬µ«µ±f(x)?c(f,g)??f'(x)g'(x)dxab²»¹¹³ÉÄÚ»ý¡££¨b£©(f,g)?(g,f)£¬ (cf,g)?c(f,g)£¬(f1?f2,g)?(f1,g)?(f2,g)£¬(f,f)?0ÇÒµ±ÇÒ½öµ±f(x)?0ʱ(f,f)?0£¬Âú×㶨Ò壬ËùÒÔ(f,g)¹¹³ÉÄÚ»ý¡£ x1112dx?(dx)(xdx)??0.196116???01?x0(1?x)202619. £¬ 1116121212x61dx??01?x1??1?10x6dx£¬ÆäÖÐ 61x11?0.0714286??dx??0.14285701?x0???1£¬Ôò147£¬ÓÉ´Ë¿ÉÖªÓûý·ÖÖÐÖµ¶¨Àí¹À¼Æ±È ÐíÍß×Ȳ»µÈʽ¹À¼Æ¸ü¾«È·¡£ 20. ?1?1(x?ax2)2dx?2222112?aa?2x?axdx35£¬a?0ʱ×îС¡£??13a£¬a?1ÔÚa?1ʱ£¬ÖµÎª321?a?23a£¬a?1ʱ×îС¡£ ʱ£¬ÖµÎª1£¬a??1ʱ£¬ÖµÎª321. Ҫʹ ?(x0212?ax?b)dx1002×îС£¬ÓÉÀ¸ñÀÊÈÕ³Ë×Ó·¨¿É½âµÃ a?1,b??a?11??180£¬Òª6£¬Îó²îΪ ʹ?01(x?ax?bx)dx1012×îС£¬ÓÉÀ¸ñÀÊÈÕ³Ë×Ó·¨¿É½âµÃ 20097992009294,b??53565356£¬Îó ²îΪ??0.164063£¬Ç°ÕßÎó²îС¡£ 242(x?a?bx?cx)dxx?22. 1ÉϾùΪżº¯Êý£¬Ò²ÎªÅ¼º¯Êý£¬Ôò?0×îС£¬ÓÉÀ¸ñÀÊÈÕ³Ë×Ó·¨¿É 1½âµÃ a?1510595?0.1171875,b??1.640625,c????0.820312512864128¡£ sin?(n?2)arccosx??sin?narccosx?1?x223. un?1(x)?un?1(x)??2xun(x)£¬ºÍ²î»¯»ýµÃÖ¤¡£ (f,P0)??sin?1124. ÓÉ»ý·ÖÇø¼äµÄ¶Ô³ÆÐÔ¼°ÀÕÈõ¶àÏîʽµÄÆæÅ¼ÐÔ¿ÉÖª 11xdx?02£¬ 311(f,P2)??(x2?)sinxdx?0?1222£¬½«Ôº¯ÊýÔÚ´Ë»ý·ÖÇø¼äÉϰ´ÀÕÈõ¶àÏîʽÈý´ÎÕ¹¿ª¾Í 1111(f,P)?xsinxdx?8sin?4cos?0.3250741??1222¿ÉÒÔÇóµÃ£¬ 153111(f,P3)??(x3?x)sinxdx?236cos?432sin??0.00234807?122222£¬´úÈë¿ÉµÃ *3S3(x)?0.487611P1(x)?0.00821825P3(x)?0.499938x?0.0205456x£¬¾ù·½Îó²îΪ 22??n2???sin2xdx?(f,P)?(f,P)?2.4487?1013?222??1??1137?124¡£ 21f(x)Tk(x)2?1*?**C?dx??cosk?d?f(x)?C0??CkTk(x)k??2?10??21?xk?125. £¬ÆäÖС£ ?????10a?10654b?542.8?0?10654a?14748998b?738643.0?026. ?a£¬?b£¬½â·½³ÌµÃ a?4.009b?55,0.£¬¾ù·½Îó²î0??13.0346¡£ 26?,27. ¾Ñ鹫ʽΪs?at?bt£¬×îС¶þ³Ë·¨½âµÃa?2.3134b10.657Ô˶¯·½³ÌΪ£¬ s?2.31346t2?10.65759¡£ 28. ¾Ñ鹫ʽΪy?t/(at?b)£¬×îС¶þ³Ë·¨½âµÃa?0.160744,b?3.17914£¬Å¨¶ÈÓëʱ¼äµÄº¯Êý ¹ØÏµÎªy?t/0.160744t?3.17914¡£ 29.ÊäÈë³õʼ½Úµãx0,x1,?,xm£¬È¨º¯Êý?(x)?0¼°Õý½»¶àÏîʽ´ÎÊýn¡£ k?0,Pk(x)?1£¬¼ÆËã?k?1,?k,Pk?1(x)¡£ ÅжÏk?n ·ñ ÊÇ ¼ÆËã?k?1,?k,Pk?1(x),?*k?1¡£ Áîk?k?1 nF(x)???*kPk(x)k?0 ÊäÈë³õʼÊý×é{xk}£¬µÈ·ÖµãÊýN?2¡£ pq?1£¬¼ÆËã?m,m?0,1,?,(N/2)?1¡£ ÅжÏq?0(mod2) ·ñ ÊÇ qA(k2?j)£¬2¼ÆËãqA(k2?j)£¬1¼ÆËãA2(k2q?j?2q?1)£¬k?0,1,?,2p?q?1£¬j?0,1,?,2q?1?1¡£ Áîq?q?1 A1(k2q?j?2q?1)£¬k?0,1,?,2p?q?1£¬j?0,1,?,2q?1¡£ ·ñ ÅжÏq?p ÊÇ ÅжÏq?0(mod2) ·ñ ÊÇ Cj?A2(j),j?0,1,?,N?1 Cj?A1(j),j?0,1,?,N?1 30. ?222220Ck??xjexp(ikj)??1,?1??i,??i,?3???i4j?0222231. £¬ 7£¬C0?16£¬ C1?4?22£¬C2?0£¬C3?4?22£¬ C4?0£¬C5?4?22£¬C6?0£¬C7?4?22¡£ µÚËÄÕ ÊýÖµ»ý·ÖÓëÊýֵ΢·ÖϰÌâ²Î¿¼´ð°¸ 21. 1) ¹«Ê½¿É¶Ôf(x)?1,x,x¾ù׼ȷ³ÉÁ¢£¬¼´ ??A?1?A0?A1?2h???hA?1?hA1?0?2?h2A?1?h2A1?h33 ?½âµÃ A?1?A1?h4,A0?h33£¬¾ßÓÐ3´Î´úÊý¾«¶È¡£ 84A?1?A1?h,A0??h33£¬¾ßÓÐ3´Î´úÊý¾«¶È¡£ 2) 3) x1??0.28990,x2?0.62660,»òx1?0.68990,x2??0.12660. ¾ßÓÐ2´Î´úÊý¾«¶È¡£ 4) 2. 1) ??T8?112£¬¾ßÓÐ3´Î´úÊý¾«¶È¡£ 11234567[f(0)?2(f()?f()?f()?f()?f()?f()?f())?f(1)]2?88888888 1?[0?2(0.0311?0.0615?0.0906?.01176?0.1644?.1836)?0.2] £½16 £½0.1114 ?S4?11357123[f(0)?4(f()?f()?f()?f())?2(f()?f()?f())?f(1)]6?48888444 1[0?4(0.0311?0.0906?0.1423?0.1836)?2(0.0615?0.1176?0.1644)?0.2]24 £½0.1116 2) T10?1.3915 S5?1.4547 3) T4?17.2277 S2?17.3222 4) T6?1.0356 S3?1.0358 3. ¿ÂÌØË¹¹«Ê½Îª C?xk?a?kh,h?b?a[7f(x0)?32f(x1)?12f(x2)?32f(x3)?7f(x4)]90. ÆäÖÐ b?a4. 6f(x)dx?Cf(x)?1,x,x,x,x,xf(x)?x?aÑéÖ¤¶ÔÓÚ£¬¾ù³ÉÁ¢£¬µ«Ê±²»³ÉÁ¢¡£ 2345b4. S?10(e?4?e?1/2?e?1)6£½0.63233 b?ab?a4(4)()f(?)1802£¬ RS??ËùÒÔ |RS|?1111?()4(e??)??()4?0.0003518021802¡£ 5. 1) ´Ë²îÖµÐÍÇó»ý¹«Ê½µÄÓàÏîΪ R??f?(?)(x?a)dxab ÓÉÓÚx?aÔÚ[a,b]ÉϺãΪÕý£¬¹ÊÔÚ[a,b]ÉÏ´æÔÚÒ»µã?£¬Ê¹ R?f?(?)?(x?a)dx?abf?(?)(b?a)2.2 ËùÒÔÓÐ?a 2) bf(x)dx?(b?a)f(a)?bf?(?)(b?a)22¡£ R??f?(?)(x?b)dxaba f?(?)(b?a)2.2 3) ??f?(?)?(x?b)dx??bR??af?(?)a?b2(x?)dx22 f??(?)ba?b2?(x?)dx2?a2 ?f??(?)(b?a)3.24 6. ÌÝÐι«Ê½ºÍÐÁ¸¦É¹«Ê½µÄÓàÏî·Ö±ðΪ Rr??RS??b?a2hf??(?)12 b?ah4(4)()f(?)1802 ÆäÖÐ ??[a,b],h?b?an£¬ bf(x)dxËùÒÔµ±n??ʱ£¬Rr?0,RS?0£¬¼´Á½¹«Ê½¾ùÊÕÁ²µ½»ý·Ö?a£¬ÇÒ·Ö±ðΪ¶þ½×ºÍËĽ×ÊÕÁ²¡£ 7. É轫»ý·ÖÇø¼ä·Ö³ÉnµÈ·ÖÔòÓ¦ÓÐ b?a?b?a?(b?a)3|R|???M???f??(?)?212?n?12n2 ÆäÖÐ M?max|f??(x)|a?x?b£¬ ½âµÃ n?(b?a)3M12?¡£ 8. Ê×ÏÈËã³öT1,T2,T4,T8£¬È»ºóÖð´ÎÓ¦ÓÃ3¸ö¼ÓËÙ¹«Ê½ 41S2k?T2k?1?T2k,k?0,1,233 C2k?R2k?¼ÆËã½á¹ûÈçϱí k 0 1 2 3 ËùÒÔ£¬»ý·Ö I?2T2k 161S2k?1?S2k,k?0,11515 641C2k?1?C2k,k?0,16363 S2k C2k R2k 0.68394 0.64524 0.63541 0.63294 0.63234 0.63213 0.63212 0.63213 0.63212 0.63212 ??0.63212?0.71327¡£ 9. a?(2R?H?h)/2?7782.5£¬ c?(H?h)/2?972.5£¬ cS?4a?21?()2sin2?d?0aËùÒÔ ?? 2?4?7782.5?21?0.01561sin?d?0 £½4¡Á7782.5¡Á1.56529 £½48728 £¨¿ÉÈÎѡһÖÖÊýÖµ»ý·Ö·½·¨£¬Èç¿ÂÌØË¹¹«Ê½£©¡£ 10. ÓÉÌ©ÀÕÕ¹¿ªÊ½ x3x5sinx?x????3!5! nsin??????24n3!n5!nÓÐ ??3?5ÓÉÓÚn??limn?sin?n??£¬ÓÃÍâÍÆËã·¨£¬Áî T(h)?1sin?hh£¬Ôò 111T()?2.59808,T()?3,T()?3.1058,33 6 12 1411114111T1()?T()?T()?3.13397T1()?T()?T()?3.1411133633631236£¬ £¬ 116111T2()?T1()?T1()?3.141593156153£¬ ¼´?µÄ½üËÆÖµÎª3.14159¡£ I??311. 11dyy 1) ¼ÆËã½á¹ûÈçϱí k 0 1 2 3 ¼´»ý·ÖI£½1.09862¡£ 1.33333 1.16667 1.11667 1.10321 1.11112 1.10000 1.09872 1.09926 1.09863 1.09862 T2k S2k C2k R2k 2) ?311111dy??dtf(t)??1t?2yt?2 £¬Áî Èýµã¸ß˹¹«Ê½ I?5158515f(?)?f(0)?f()?1.0980495995 Îåµã¸ß˹¹«Ê½ I?0.23693f(?0.90618)?0.47863f(?0.53847)?0.56889f(0)?0.47863f(0.53847)?0.23693f(0.90618) £½1.09862¡£ I????313) 1dyy 212.51311dy??dy??dy??dy1.5y22.5yyy 31?111111111(?dt??dt??dt??dt)?1?1?1?140.25t?1.250.25t?1.750.25t?2.250.25t?2.75 ¶Ôÿ¸ö»ý·ÖÓøß˹¹«Ê½ I£½1.09854¡£ ?1?1f(x)dx?f(?33)?f()33£¬µÃ ´Ë»ý·Ö¾«È·ÖµÎªln3?1.09861¡£ 12. Èýµã¹«Ê½£º f?(1.0)?f?(1.1)?f?(1.2)?1[?3f(1.0)?4f(1.1)?f(1.2)]??0.2472?0.1 1[?f(1.0)?f(1.2)]??0.2172?0.1 1[?f(1.1)?f(1.3)]??0.1892?0.1¡£ f?(x)??2(1?x)?3£¬ f??(x)?6(1?x)?4£¬ f???(x)??24(1?x)?5 h20.12|R1|?f???(?)??24(1?1.2)?5?1.55?10?333f?(1.0)µÄÎó²î h20.12|R2|??f???(?)??24(1?1.2)?5?7.8?10?466f?(1.1)µÄÎó²î ?4f?(1.2)µÄÎó²î |R3|?6.2?10¡£ Îåµã¹«Ê½£º f?(1.0)?1[?25f(1.0)?48f(1.1)?36f(1.2)?16f(1.3)?3f(1.4)]??0.248312?0.1 f?(1.1)?f?(1.2)?1[?3f(1.0)?10f(1.1)?18f(1.2)?6f(1.3)?f(1.4)]??0.216312?0.1 1[f(1.0)?8f(1.1)?8f(1.3)?f(1.4)]??0.188312?0.1¡£ Îó²î·Ö±ðΪ R1?1.7?10?3£¬ R2?3.4?10?4£¬ R3?4.7?10?4¡£ µÚÎåÕ ³£Î¢·Ö·½³ÌÊýÖµ½â·¨Ï°Ìâ²Î¿¼´ð°¸ n(n?1)2n2ahah?nbh2£¬Îó²î2£¬¸Ä½øÓÈÀ·¨±í´ïʽ 1£® ÓÈÀ·¨±í´ïʽ yn?1?yn?h(axn?b)?hn22yn?1?yn??f(xn,yn)?f(xn?h,yn?hf(xn,yn))??ah?nbh22£¬ÎÞÎó²î¡£ 2£® ½üËÆ½â 1.11 1.24205 1.39847 1.58181 1.79490 ׼ȷ½â 1.11034 1.24281 1.39972 1.58365 1.79744 0.6 0.7 0.8 0.9 1.0 ½üËÆ½â 2.04086 2.32315 2.64558 3.01237 3.42817 ׼ȷ½â 2.04424 2.32751 2.65108 3.01921 3.43656 0.1 0.2 0.3 0.4 0.5 3£® ½üËÆ½â 0.0055 0.0219275 0.0501444 0.0909307 0.144992 yn?1?(2?hn)2?h׼ȷ½â 0.00516258 0.0212692 0.0491818 0.0896800 0.143469 0.1 0.2 0.3 0.4 0.5 hyn?1?yn?(?y24£® £¬¼´ yn?1?2?hyn2?h£¬ÓÖÓÉ y(0)?1£¬ÔòÓС£ ?hnhµ± 2h?02ʱ£¬ 2?hn2h22?hh??hhn22?limyn?lim()?lim(1?)?limeh?0h?2?h0h?0h?2?h?e?xn¡£ 05£® È¡²½³¤h=0.5£¬£¬f(0.5)=0.500000£¬f(1)=1.14201£¬f(1.5)=2.50115£¬f(2)=7.24502¡£ 6£® (1) 0.2 0.4 0.6 0.8 1.0 ½üËÆ½â 1.24280 1.58364 2.04421 2.65103 3.43655 (2) 0.2 0.4 0.6 0.8 1.0 ½üËÆ½â 1.72763 2.74302 4.09424 5.82927 7.99601 K2?fn?th(fx?f?fy)n?o(h)£¬K3?fn?(1?t)h(fx?f?fy)n?o(h)£¬Ôò7£® K1?fn£¬ h2h??yn?hy'n?y\n?yn?(fn?th(fx?f?fy)n?fn?(1?t)h(fx?f?fy)n)?o(h2)22h2h?hfn?(fx?f?fy)?(2fn?h(fx?f?fy)n)?o(h2)?o(h2)22 8£® (1)Áî D???11222?fK?f?hDf?hDf?o(h)2nnn?x?y£¬Ì©ÀÕÕ¹¿ª¿ÉµÃK1?fn£¬318£¬2221?2h,yn?hK2)?fn?h(D?hDfn)fn?h2D2fn?o(h2)3333?y9£¬Í¬ÀíÓÐ 121hDfn?h3(D2f?fyD)fn?o(h3)26£¬ ´úÈëÁú¸ñ-¿âËþ¹«Ê½¿ÉµÃ K3?f(xn?yn?1?yn?hfn?11222K?f?hDf?hDf?o(h)32nnn??o(h)¡£(2) ÀàËÆ(1)Õ¹¿ª¿ÉµÃK1?fn£¬28£¬ K3?f(xn?3331?9h,yn?hK2)?fn?h(D?hDfn)fn?h2D2fn?o(h2)4442?y32£¬Í¬ÀíÓÐ 121hDfn?h3(D2f?fyD)fn?o(h3)26£¬ ´úÈëÁú¸ñ-¿âËþ¹«Ê½¿ÉµÃ yn?1?yn?hfn???o(h3)¡£ hyn?1?yn?(2?yn?1?yn)29£® ¶þ½×ÏÔʽ¹«Ê½Îª£¬´úÈëµÃy(1.0)?0.626£¬¶þ½×Òþʽ¹«Ê½Îª hyn?1?yn?(2?yn?yn?1)2£¬´úÈëµÃy(1.0)?0.633£¬Õæ½âΪy(1.0)?0.6321¡£ 10£® h2(2)h3(3)yn?1?yn?hy?yn?yn?o(h3)26(1)n(1)n£¬ y'n?1?y?hy(1)n(2)nh2(3)?yn?o(h2)2£¬ h2(2)h3(3)h2(3)3(1)(2)yn?1?yn?hy?yn?yn?o(h)y'n?1?yn?hyn?yn?o(h2)262£¬£¬´úÈëµÃ (3)??h3yn?o(h3)?o(h2)5853(3)hyn£¬½Ø¶ÏÎó²îÊ×ÏîΪ8¡£ 11£® h2(2)h3(3)yn?1?yn?hy?yn?yn?o(h3)26(1)n(1)n2(2)n£¬ y'n?1?y?hy(1)n(2)nh2(3)?yn?o(h2)2£¬ yn?2?yn?2hy?2hy(1)n4h3(3)?yn?o(h3)3£¬ (1)(2)(3)y'n?2?yn?2hyn?2h2yn?o(h2)£¬ h2(2)h3(3)yn?1?yn?hy?yn?yn?o(h3)26£¬´úÈë´ý¶¨ÏµÊýµÄ¹«Ê½ÖпɵÃϵÊýÖ®¼äµÄ¹ØÏµÊ½ Ϊ a0?a1?a2?1£¬ ?a1?2a2?b0?b1?b2?1£¬ a1?4a2?2b1?4b2?1£¬ ?a1?8a2?3b1?12b2?1¡£ 12£® 2y'?z,z'?0.1(1?y)z?y£¬ÆäÖÐy'?z,z'?3z?2yy(0)?1,z(0)?1(1)£¬ÆäÖС£(2) x'?a,a'??y(0)?1,z(0)?0¡£(3) x(x2?y2)3,y'?b,b'??y(x2?y2)3£¬ÆäÖÐ x(0?)a0?,(y0?)0b¡£, ?13£® ÓòîÉ̱ƽüµ¼ÊýµÄ·½·¨°ÑÔ±ßÖµÎÊÌâת»¯ÎªµÈ¼Û²î·Ö·¨·½³Ì×é¿ÉµÃ ?31y1?16y2?0,16y1?31y2?16y3?0,16y2?31y3??26.88£¬½â´Ë·½³Ì×é¿ÉµÃy1?0.494y23?80,14£® y30?.95¡£ 7862,1.36148h?1,xn?n£¬³õÖµÌõ¼þµÈÓÚ׼ȷ½â£¬ÓÉÊýѧ¹éÄÉ·¨´úÈë²î·Ö¹«Ê½Öпɵà 22(n?1)2h2?(n?1)h(n?1)2h2?(n?1)hyn?1?2yn?yn?1?1?nh?nh??1?22£¬¼´²î·Ö·¨Çó³ö µÄ½âºãµÈÓÚ׼ȷ½â¡£ 15£® ²î·Ö·½³Ì 6y0?5y1?1,y02?6y1?54y2?2?5y11?.y28?,£¬2y9??534y2?68y3?31y4?0.6,41y3?81y4??72.2£¬´úÈëµÃy0?1.01487,y1?1.01785y2?1.07010,y3?1.21030,y4?1.51329¡£ µÚÁùÕ ·½³ÌÇó¸ù 1. Áîf(x)?x2?x?1£¬Ôòf(0)??1?0,f(2)?1?0. ak bk xk f(xk)·ûºÅ k 0 0 2 1 £ 1 1 2 1.5 £ 2 1.5 2 1.75 £« 3 1.5 1.75 1.625 £« 4 1.5 1.625 1.5625 £ 5 1.5625 1.625 1.5938 £ 2. 3. 1) ?(x)?1?12x2£¬ÔÚx?1.5¸½½ü£¬|??(x)|?x2?1£¬ µü´ú¹«Ê½ÊÕÁ²¡£ ?2x 2) ?(x)?31?x2£¬ÔÚx?1.5|??(x)|¸½½ü£¬ 3(1?x2)2/3?1 µü´ú¹«Ê½ÊÕÁ²£¬µü´úµÃ½üËÆÖµ1.466¡£ ??(x)|?1 3) ?(x)?1|x?1£¬ 2(x?1)3/2£¬|??(1.5)|?1.414?1£¬ £¬µü´ú¹«Ê½·¢É¢¡£ 4. 1) ¶þ·Ö14´ÎµÃ0.0905456£» 2) µü´ú5´ÎµÃ0.0905246¡£ 5. µü´úº¯Êý?(x)?x???f(x)£¬ ??(x)?1???f?(x)£¬ ÓÉÒÑÖª 0?f?(x)?M?2?£¬ÓÐ0???f?(x)?2£¬ËùÒÔ|??(x)|?1. ¼´µü´ú¹ý³ÌÊÕÁ²¡£ ?16. ½«x??(x)ת»¯Îªx??(x)£¬´Ëʱ |??1(x)?|?11??1.??(x)k ÔÚx?4.5¸½½ü£¬x?tgx?tg(x??)£¬ËùÒÔµü´ú¸ñʽΪx?arctgx??£¬µü´úÈý´ÎµÃ4.4934¡£ xk?13f(xk)2xk?1?xk??2f?(xk)3xk?3£¬µü´úÈý´ÎµÃ1.879¡£ 7. 1) Å£¶Ù·¨µü´ú¸ñʽ 2) Ïҽط¨µü´ú¸ñʽ xk?1?xk?f(xk)(xk?xk?1)f(xk)?f(xk?1)£¬µü´úÈý´ÎµÃ1.879¡£ 3) Å×ÎïÏß·¨ f(x0)??3,f(x1)?17,f(x2)?1£¬ f[x1,x0]?10,f[x2,x1]?16,f[x2,x1,x0]?6, ¹Ê ??f[x2,x1]?f[x2,x1,x0](x2?x1)?10£¬ xk?1?xk?2f(xk)Ôò ???2?4f(xk)f[xk,xk?1,xk?2]£¬µü´úÈý´ÎµÃ1.879¡£ 8. ×îСÕý¸ùΪ4.4934¡£ 1a1(xk?)??2a?axk29. 2£¬¼´xk?a¡£ 2xk?11xk?a1a1a??(1?)?(1?)?122xk2xk22axk£¬ ¼´xk?1?xk£¬ÐòÁе¥µ÷µÝ¼õ¡£ 10. µü´úº¯ÊýΪ ?(x)?x?f(x)f?(x)£¬ÇÒÓÐ f??(x?)?(x)?x,??(x)?0,???(x)?f?(x?)£¬ ????xk?x?f??(x?)lim??2limxk?x?k??(x2f?(x?). k??k?1?x)£¬ xk?xk?1??(xk?1)??(xk?2) 1??(xk?1)?[?(xk?1)???(xk?1)(xk?2?xk?1)????(?k?1)(xk?2?xk?1)2]2 1???(xk?1)(xk?2?xk?1)????(?k?1)(xk?2?xk?1)22 ÆäÖÐ?k?1½éÓÚxk?1Óëxk?2Ö®¼ä¡£½«ÉÏʽÁ½±ß³ýÒÔ(xk?1?xk?2)£¬²¢½«??(xk)ÔÚx´¦Ì©ÀÕÕ¹¿ªµÃ xk?xk?1??(xk?1)1?????(?k?1)?2xk?1?xk?2 (xk?1?xk?2)22???(x?)????(?k?1)(xk?1?x?)1?????(?k?1)?2(xk?1?x?)?(x??xk?2) xk?1?x????(?k?1)(xk?2?x?)21?????(?k?1)?2xk?1?x?1?(xk?2?x?)2x??xk?2£¬ ÆäÖÐ?k?1½éÓÚxk?1ÓëxÖ®¼ä¡£½«ÉÏʽÁ½±ßÈ¡¼«ÏÞ£¬¼°k???lim?k?x?£¬k??lim?k?x?£¬µÃ xk?xk?11f??(x?)lim??lim???(?k?1)??2k??(x2k??2f?(x?)¡£ k?1?xk?2)11. 1) xk?1?xk?f(xk)??xkf?(xk)£¬µü´ú¸ñʽ·¢É¢¡£ f(xk)1??xkf?(xk)2£¬µü´ú¸ñʽÊÕÁ²£¬ÇÒÊÕÁ²µ½x??0¡£ ? 2) xk?1?xk?ek?1x?x?limk?1?p?limk??ek??(x?x)k??kkҪʹ lim?1xk2?C(C?0Ϊ³£Êý)pxk£¬ Ôòp?1£¬ÎªÒ»½×ÊÕÁ²¡£ 312. Áîf(x)?x?a£¬µü´ú¹«Ê½Îª xk?133f(xk)xk?a2xk?a?xk??xk??22f?(xk)3xk3xk¡£ 2x3?a2a??(x)??(x)???(?2)x?32333x£¬Ôò£¬ËùÒÔ??(a)?0£¬ ?4?1/3?????(x)?2ax?(a)?2a?0£¬Òò´Ëµü´ú¸ñʽΪÏßÐÔÊÕÁ²¡£ ÓÖ £¬ËùÒÔ xk?113. a23f(xk)xk3axk?xk?xk??xk??2af?(xk)2a3xk£¬ 1?È¡a?115,x0?10£¬µü´úÈý´ÎµÃ115?10.7238¡£ n14. ÇóaµÄµü´ú¹«Ê½·Ö±ðΪ xk?1nn?1(n?1)xk?ax1k?x???(1?)xkn?1k?1nxkann £¬ xn?11n?1n?1?(x)???(1?)x???(x)??xannaÉèµü´úº¯ÊýΪ £¬Ôò£¬ lim(na?xk?1)/(na?xk)2?k?????(na)2!n?1??a2an?1n?(1?n)/2na. x(x2?3a)?(x)?3x2?a£¬Ôò?(a)?a£¬ 15. ¼Çµü´úº¯Êý 23(3x?a)?(x)?x?3ax ¢Ù ÓÉÉÏ 22?6x?(x)?(3x?a)?(x)?3x?3a Á½±ßÇ󵼵à Ôò¿ÉµÃ ??(a)?0 2?6?(x)?12x?(x)?(3x?a)???(x)?6x ¶Ô¢ÙʽÁ½±ßÇó¶þ½×µ¼ÊýµÃ Ôò¿ÉµÃ ???(a)?0 2¶Ô¢ÙʽÁ½±ßÇó¶þ½×µ¼ÊýµÃ 3?6??(x)?3?(6x)???(x)?(3x?a)????(x)?6 Ôò¿ÉµÃ ËùÒÔµü´ú¹«Ê½ÊÇÈý½×·½·¨£¬ÇÒ ????(a)?32a lim(a?xk?1)(a?xk)?k??3????(a)3!?14a. µÚÆßÕ ½âÏßÐÔ·½³Ì×éµÄÖ±½Ó·½·¨Ï°Ìâ²Î¿¼´ð°¸ 1£® (a)¸ß˹ÏûÈ¥·¨½âµÃx1??0.1670,x2??1.6504,x3?2.1967,x4??0.4468£»(b)ÁÐÖ÷ÔªÏû È¥·¨½âµÃx1??0.181919,x2??1.66303,x3?2.21723,x4??0.446704¡£ A2(ij)?ai?1,j?1?ai?1,1a1,j?1a11?aj?1,i?1?aj?1,1a1,i?1a11?A2(ji)2£® (a) £¬¹ÊA2¶Ô³Æ¡£(b) ¸ß˹ÏûÈ¥·¨½â µÃx1?4.58669,x2??0.631523,x3?2.73520¡£ a(k)ij3£® (a) ?a(k?1)ij?m(k?1)i,k?1k?1,ja(t)?a??mitatj(1)ijt?1k?1(r)m?l,a£¬(b)ÓÉirirrj?urj¼°(a)µÄ½áÂۿɵà urj?a4£® (r)rj?arj??lrkukjk?1r?1, lir?mir?a(r)ir/a(r)rr?(air??likukr)/urrk?1r?1¡£ (i)uaÒòΪA·ÇÆæÒ죬UµÄ¶Ô½ÇÔªii²»ÎªÁ㣬ÓÖLU·Ö½âµÈ¼ÛÓÚ¸ß˹ÏûÈ¥·¨£¬ii?uii?0£¬ ÓÉÒýÀí¿ÉÖª£¬¾ØÕóAµÄ˳ÐòÖ÷×Óʽ¾ù²»ÎªÁã¡£ 5£® ¸ß˹ÏûÈ¥·¨µÚk²½µÈ¼ÛÓÚ×ó³Ëµ¥Î»ÏÂÈý½Ç¾ØÕóLk£¬¶øË³ÐòÖ÷×Óʽ¾ù²»ÎªÁã±£Ö¤ËùµÃ (n)?1?1¾ØÕó¶Ô½ÇÔª²»ÎªÁ㣬¿É½øÐеÚk?1²½ÏûÔª£¬U?A?Ln?L1A£¬A?L1?LnU?LU¡£ 6£® nA2ii?a?(2)ii?aii?a1iai1/a11?aii?a1iai1/a11?j?2,j?i?nnaij?ai1(a11?a1i)/a11(2)aij j?2,j?i?aij?ai1j?2,j?i?na1j/a11?j?2,j?i?naij?ai1a1j/a11?j?2,j?i?£¬Ôò A2ÊǶԽÇÓÅÊÆÕó£¬¹Ê ¸ß˹ÏûÈ¥·¨Ó벿·ÖÑ¡Ö÷Ôª¸ß˹ÏûÈ¥·¨¶ÔÓڶԳƵĶԽÇÓÅÊÆÕóÿһ²½¾ùѡȡͬÑùµÄÖ÷Ôª£¬µÃ³öµÄÊÇͬÑùµÄ½á¹û¡£ 7£® Ti(2)(2)Ta?a?aa/a?a?aa/a?aa?eAe?0ij1ji111ji1ij111ji£¬ÓÖÓе±?i?2ʱii(1)ii£¬(2)ij?1eAei?e??b1Ti0??a11??In?1??0T?a1T?ei?(ei)n?1A2(ei)n?1?0A2?£¬¹Ê A2ÊǶԳÆÕý¶¨¾ØÕó£¬(3) (2)a?maxaij,x?yaii?aij?a1iai1/a11?aii?a1i2/a11?aii£¬(4)Èôxy£¬ÁîA'?I1yAI1y£¬ÓÉÓÚA'(2)2A'a'?a'?a'a'/a'?a'?a'/a11'?0£¬2xxxx1xx111xxx1ºÍÒ²ÊǶԳÆÕý¶¨¾ØÕ󣬴úÈëµÃì¶Ü£¬¹ÊAµÄ¾ø¶ÔÖµ×î´óµÄÔªËØ±ØÔÚ¶Ô½ÇÏßÉÏ£¬(5)2?i,j?n(k)(k?1)???aij?1Ak¶Ô³ÆÕý¶¨£¬aij?aij¡£ (2)(2)maxaij?axx?axx?maxaij2?i,j?n£¬(6)¶ÔËùÓÐk¾ùÓÐ 8£® 9£® ?1???1???ILI??Lkijkij?mk?1,k??????m1n,k??£¬ÆäÖÐmi,kÓëmj,kλÖû¥»»¡£ (k)(k)(k?1)(k)(k)m?a/a,a?a?makjkkijijkjik,(i,j?k?1,?,n)£¬½øÐÐn´Î¶ÔAÊ©ÐгõµÈÁб任£¬kj(n)A?L,mkj?Ukj¼´ÎªËùÇó¡£ ³õµÈÁб任ºó£¬Áî 10£® (a) ÈôUΪn½×¿ÉÄæÏÂÈý½Ç¾ØÕó£¬Ukk?0£¬Ôò µ±k?1ʱx1?d1/U11£¬¶øµ± xk?(dk??Uk,ixi)/Ukki?1k?1k?2,3,?,nʱ£¬ £¬Ëã·¨¼´´ÓµÚÒ»ÐпªÊ¼Ë³ÐòÑ»·£¬Í¬Àí¿ÉÖªÈôU?,n,ʱ£¬Îªn½×¿ÉÄæÉÏÈý½Ç¾ØÕó£¬Ôòµ±k?1ʱxn?dn/Unn£¬¶øµ±k?2,3xn?1?k?(dn?1?k??Un?1?k,n?i?kxn?i?k)/Un?1?k,n?1?ki?2k£¬Ëã·¨¼´´Ó×îºóÒ»ÐпªÊ¼ÄæÐòÑ»·£¬(b)µÚk ²½Ñ»·½øÐÐ U?1iik j´Î³Ë³ý·¨£¬¹²½øÐÐn(n?1)/2´Î³Ë³ý·¨£¬ (c) 11£® ?1/Uii,U?1ij?1???UikUkj/Uii,i?n?1,n?2,?,1,j?i?1,i?2,?,nk?i?1¡£ ?TT?1T?T?1(a)AA?I?AA?A?A£¬ ÓÉ´Ë¿ÉÖªA?1Ò²ÊǶԳƾØÕó£¬ ?1?x,(ATx)?1A(A?)x?1x?A£¬0xÓÉ´Ë¿ÉÖªA?1Ò²ÊǶԳÆÕý¶¨¾ØÕó£¬ (b)Lnn?Ann,Lni?Ani/Lnn,Li,i?Ai,i??L,Li,j?(Ai,j??Li?k,iLi,i?k)/Li,i2i,kk?1k?1i?1n?i£¬µÃ³öΨһÕý ¶Ô½ÇÔªµÄÏÂÈý½ÇÕóLʹµÃA?LTL¡£ ??4/8510/17?23/85?16/17???33/85?6/1741/8513/17?1?A????19/855/17?3/85?8/17???4/855/17?¡£ ??3/85?1/1712£® 13£® 14£® 15£® x?(5/6,2/3,1/2,1/3,1/6)T¡£ x?(10/9,7/9,23/9)T¡£ °´¸ß˹ÏûÈ¥·¨£¬AÎÞ·¨½øÐеڶþ´ÎÏûÈ¥£¬»»Ðкó¿ÉÒԷֽ⣬BµÚ¶þ´ÎÏûÈ¥¿É³ËÈÎÒâ ϵÊý£¬·Ö½â²»Î¨Ò»£¬C¿ÉΨһ·Ö½â¡£ 00??212??1????I13A??1/210??0?3/20?1T711Ty?(3,,2),x?(,?,)?0?21??0?04?£¬½âµÃ???2632¡£ 16£® 17£® 18£® ¸ß˹ÏûÈ¥·¨¹«Ê½ÖÐÈ¥µôaij?0(i?j?t)¼´¿ÉÍÆ³ö¸Ã¹«Ê½¡£ A??1.1,A1?0.8,A2?0.827853,AnF?0.842615¡£ 1An?19£® (a) x??maxxi??xi?x1?nmaxxi?nx1?i?ni?11?i?n?,(b) n2ij?i,j?1?an2ij/n???(Aii?1nTA)/n??max(AA)?A2?T??(Aii?1nTA)?i,j?1?aP?A?¡£ P20£® xP?Px?0,xP?0?Px?0?x?0£¬ ?x??Px??Px??x£¬ x?yxP?P(x?y)?Px?Py?xP?yP£¬¹ÊxPÊÇRnÉϵÄÏòÁ¿·¶Êý¡£ ?(Ax,x)?0,x1221£® ¹Ê AA?0?xAx?0?x?0,?xTA?(?Ax,?x)??x12A£¬A?LLTx?yA??Lx2?2(Lx,Ly)?Ly2???Lx2?2Lx???1212221222Ly2?Ly2??212?(Ax,x)?(Ay,y)?xA?yA£¬¹ÊxAÊÇRnÉϵÄÏòÁ¿·¶Êý¡£ lim(?xi)p??i?1np1/p22£® 23£® ?maxxilim(?(xi/maxxi)p)1/p?maxxi?x1?i?np??i?11?i?n1?i?nn?¡£ T³ä·ÖÐÔ£ºÈôÓÐxºÍyÏßÐÔÏà¹ØÇÒxy?0£¬ ¼´x?ky(k?0)£¬´úÈëµÃ x?y2?(1?k)y?x?y222£»Î¨Ò»ÐÔ£ºÈôÓÐx?y2?x2?y2£¬ÓÉÓÚ x?y2?xTx?2xTy?yTy?xTx?yTy?x2?y2£¬Á½±ßͬʱƽ·½¿ÉµÃ³öxTy?0£¬ TTTxy?xxyy£¬µ±ÇÒ½öµ±xºÍyÏßÐÔÏà¹ØÊ±µÈºÅ³ÉÁ¢¡£ ÏûÈ¥¹²Í¬Ïî¿ÉµÃ 24£® 2ÒÔÉÏͼÏñ·Ö±ðΪx1?1£¬xA'?max25£® y'?0?1£¬xPAyPy??1¡£ PAP?1xx?PAP?1¡£ Ay'y'?maxPy?0?maxx?026£® ÓÉÏòÁ¿·¶ÊýµÄÏàÈÝÐÔ¿ÉÖª´æÔÚ³£Êýa1,a2?0£¬Ê¹µÃa1xs?xt?a2xs£¬ÓÚÊÇÁî c1?a1/a2>0£¬c2?a2/a1>0£¬Ôò¶ÔÈÎÒâA?Rn?n£¬¾ùÓв»µÈʽc1As?maxxs?0a1Axa2xss?maxxt?0Axxtt?At?maxxs?0a2Axa1xss?c2As¡£ TTTT???(AA)?x?0,AAx??x,AA(Ax)??Ax???(AA)¼´27£® Èô£¬Ôò¾ÍÓУ¬¿ÉÍÆ³ö TTTT?(ATA)??(AAT)£¬?(AA)??(AA)?(AA)??(AA)¡£Í¬Àí¿ÉÒÔÍÆ³ö£¬×ÛºÏÕâÁ½µã¼´¿ÉµÃ 28£® 29£® 1A?1?1/max?x??0A?1xx???min?1?x??Ax?0A?1x?miny?Ayy???0¡£ ?1A(A??A)£¬¹Ê´æÔÚ£¬ A?1?A?A?1?A?1£¬Ôò ?1?1(I?A?A)?1/?1?A?1A?1?(A??A)?1A?1?1A?(1I?A??1A)?A??A1A?1?A??A11?A??1Acond(A)??AA1?cond(A)?AA¡£ 30£® cond(A)??A?A?1?d)A?3?6?£¬µ±??2/3ʱ£¬?£¬µ±??2/3ʱ£¬con(cond(A)??4?2/?£¬µ±???2/3ʱ£¬cond(A)?ÓÐ×îСֵ7¡£ 31£® (a) (b) 2cond(A)2??max/?min?(?max(WTW)/?min(WTW))2?cond(W)2£¬£¬ ?(WTW)??(WWT), cond(WT)2??max(WTW)/?min(WTW)?cond(W)2cond(A)2?cond(WT)2cond(W)2¡£ 32£® 33£® 34£® cond(A)2??max/?min?39206.0£¬cond(A)??A?A?1??39601¡£ cond(A)2??max(ATA)?max(AAT)??maxI?maxI?1¡£ cond(AB)?ABB?1A?1?ABB?1A?1?cond(A)cond(B)¡£ µÚ°ËÕ ½âÏßÐÔ·½³Ì×éµÄµü´ú·¨Ï°Ìâ²Î¿¼´ð°¸ 1. (a) Jacobiµü´ú¾ØÕó 0.40.2??0???1B?D(L?U)???0.2500.5??0.2?0.30??? 3|?I?B|???0.21??0.055?0 ÌØÕ÷·½³ÌΪ ÌØÕ÷¸ù¾ùСÓÚ1£¬Jacobiµü´ú·¨ÊÕÁ²¡£ Gauss-Seidelµü´ú¾ØÕó ?00.40.2????1G?(D?L)U??00.40.7??00.040.17??? 32??0 ÌØÕ÷·½³ÌΪ |?I?G|???0.57??0.096ÌØÕ÷¸ù¾ùСÓÚ1£¬Gauss-Seidelµü´ú·¨ÊÕÁ²¡£ (b) Jacobiµü´ú¸ñʽΪ X(k?1)?BX(k)?f1 ?1Tf?Db?(?1.250.3)ÆäÖÐBÈçÉÏ£¬1£¬ µü´ú18´ÎµÃ X???3.99999642.99997391.9999999?£¬ TGauss-Seidelµü´ú¸ñʽΪ X(k?1)?GX(k)?f2 ?1Tf?(D?L)b?(?2.42.61.53)ÆäÖÐGÈçÉÏ£¬2£¬