Ëս̰æÆßÄ꼶ϲáÊýѧÆÚÄ©¿¼ÊÔ֪ʶµã×ܽá
µÚ¾ÅÕ ÕûʽµÄ³Ë·¨ÓëÒòʽ·Ö½â
Ò»¡¢Õûʽ³Ë³ý·¨
µ¥ÏîʽÓëµ¥ÏîʽÏà³Ë,°ÑËüÃǵÄϵÊý,Ïàͬ×Öĸ·Ö±ðÏà³Ë,¶ÔÓÚÖ»ÔÚÒ»¸öµ¥ÏîʽÀﺬÓеÄ×Öĸ,ÔòÁ¬Í¬ËüµÄÖ¸Êý×÷Ϊ»ýµÄÒ»¸öÒòʽ.ac5¡¤bc2=(a¡¤b)¡¤(c5¡¤c2)=abc5+2=abc7 ×¢£ºÔËËã˳ÐòÏȳ˷½£¬ºó³Ë³ý£¬×îºó¼Ó¼õ
µ¥ÏîʽÏà³ý,°ÑϵÊýÓëͬµ×ÊýÃÝ·Ö±ðÏà³ý×÷ΪÉ̵ÄÒòʽ,Ö»ÔÚ±»³ýʽÀﺬÓеÄ×Öĸ,ÔòÁ¬Í¬ËüµÄÖ¸Êý×÷ΪÉ̵ÄÒ»¸öÒòʽ
µ¥ÏîʽÓë¶àÏîʽÏà³Ë,¾ÍÊÇÓõ¥Ïîʽȥ³Ë¶àÏîʽµÄÿһÏî,ÔÙ°ÑËùµÃµÄ»ýÏà¼Ó,m(a+b+c)=ma+mb+mc ×¢£º²»Öز»Â©£¬°´ÕÕ˳Ðò£¬×¢Òâ³£ÊýÏî¡¢¸ººÅ .±¾ÖÊÊdz˷¨·ÖÅäÂÉ¡£
¶àÏîʽ³ýÒÔµ¥Ïîʽ,ÏȰÑÕâ¸ö¶àÏîʽµÄÿһÏî³ýÒÔÕâ¸öµ¥Ïîʽ,ÔÙ°ÑËùµÃµÄÉÌÏà¼Ó.
¶àÏîʽÓë¶àÏîʽÏà³Ë,ÏÈÓÃÒ»¸ö¶àÏîʽµÄÿһÏî³ËÁíÒ»¸ö¶àÏîʽµÄÿһÏî,ÔÙ°ÑËùµÃµÄ»ýÏà³Ë(a+b)(m+n)=am+an+bm+bn
³Ë·¨¹«Ê½£ºÆ½·½²î¹«Ê½:Á½¸öÊýµÄºÍÓëÕâÁ½¸öÊýµÄ²îµÄ»ý,µÈÓÚÕâÁ½¸öÊýµÄƽ·½²î. (a+b)(a-b)=a2-b2
Íêȫƽ·½¹«Ê½:Á½ÊýºÍ[»ò²î]µÄƽ·½,µÈÓÚËüÃÇµÄÆ½·½ºÍ,¼Ó[»ò¼õ]ËüÃÇ»ýµÄ2±¶. (a¡Àb)2=a2¡À2ab+b2
Òòʽ·Ö½â£º°ÑÒ»¸ö¶àÏîʽ»¯³É¼¸¸öÕûʽ»ýµÄÐÎʽ,Ò²½Ð×ö°ÑÕâ¸ö¶àÏîʽ·Ö½âÒòʽ.
Òòʽ·Ö½â·½·¨:
1¡¢ÌṫÒòʽ·¨. ¹Ø¼ü:ÕÒ³ö¹«Òòʽ
¹«ÒòʽÈý²¿·Ö£º¢ÙϵÊý(Êý×Ö)Ò»¸÷ÏîϵÊý×î´ó¹«Ô¼Êý£»¢Ú×Öĸ--¸÷ÏÓеÄÏàͬ×Öĸ£»¢ÛÖ¸Êý--Ïàͬ×ÖĸµÄ×îµÍ´ÎÊý£»²½Ö裺µÚÒ»²½ÊÇÕÒ³ö¹«Òòʽ£»µÚ¶þ²½ÊÇÌáÈ¡¹«Òòʽ²¢È·¶¨ÁíÒ»Òòʽ£®Ðè×¢Ò⣬ÌáÈ¡Í깫
5
Ëս̰æÆßÄ꼶ϲáÊýѧÆÚÄ©¿¼ÊÔ֪ʶµã×ܽá
Òòʽºó£¬ÁíÒ»¸öÒòʽµÄÏîÊýÓëÔ¶àÏîʽµÄÏîÊýÒ»Ö£¬ÕâÒ»µã¿ÉÓÃÀ´¼ìÑéÊÇ·ñ©Ï
×¢Ò⣺
¢Ù ÌáÈ¡¹«Òòʽºó¸÷ÒòʽӦ¸ÃÊÇ×î¼òÐÎʽ£¬¼´·Ö½âµ½¡°µ×¡±£»¢ÚÈç¹û¶àÏîʽµÄµÚÒ»ÏîµÄϵÊýÊǸºµÄ£¬Ò»°ãÒªÌá³ö¡°£¡±ºÅ£¬Ê¹À¨ºÅÄڵĵÚÒ»ÏîµÄϵÊýÊÇÕýµÄ£®
2¡¢¹«Ê½·¨.¢Ùa2-b2=(a+b)(a-b)Á½¸öÊýµÄƽ·½²î,µÈÓÚÕâÁ½¸öÊýµÄºÍÓëÕâÁ½¸öÊýµÄ²îµÄ»ýa¡¢b¿ÉÒÔÊÇÊýÒ²¿ÉÊÇʽ×Ó¢Úa2¡À2ab+b2=(a¡Àb)2 Íêȫƽ·½Á½¸öÊýƽ·½ºÍ¼ÓÉÏ»ò¼õÈ¥ÕâÁ½¸öÊýµÄ»ýµÄ2±¶,µÈÓÚÕâÁ½¸öÊýµÄºÍ[»ò²î]µÄƽ·½.
x3-y3=(x-y)(x2+xy+y2) Á¢·½²î¹«Ê½ 3¡¢Ê®×ÖÏà³Ë(x+p)(x+q)=x2+(p+q)x+pq
Òòʽ·Ö½âÈýÒªËØ£º£¨1£©·Ö½â¶ÔÏóÊǶàÏîʽ£¬·Ö½â½á¹û±ØÐëÊÇ»ýµÄÐÎʽ£¬ÇÒ»ýµÄÒòʽ±ØÐëÊÇÕûʽ£¨2£©Òòʽ·Ö½â±ØÐëÊǺãµÈ±äÐΣ»£¨3£©Òòʽ·Ö½â±ØÐë·Ö½âµ½Ã¿¸öÒòʽ¶¼²»ÄÜ·Ö½âΪֹ£®
ŪÇåÒòʽ·Ö½âÓëÕûʽ³Ë·¨µÄÄÚÔڵĹØÏµ:»¥Äæ±äÐΣ¬Òòʽ·Ö½âÊǰѺͲΪ»ýµÄÐÎʽ£¬¶øÕûʽ³Ë·¨Êǰѻý»¯ÎªºÍ²î
ÌíÀ¨ºÅ·¨Ôò£ºÈçÀ¨ºÅÇ°ÃæÊÇÕýºÅ£¬À¨µ½À¨ºÅÀïµÄ¸÷Ïî¶¼²»±äºÅ£¬ÈçÀ¨ºÅǰÊǸººÅ¸÷Ïî¶¼µÃ¸Ä·ûºÅ¡£ÓÃÈ¥À¨ºÅ·¨ÔòÑéÖ¤
6
Ëս̰æÆßÄ꼶ϲáÊýѧÆÚÄ©¿¼ÊÔ֪ʶµã×ܽá
µÚʮՠ¶þÔªÒ»´Î·½³Ì×é
£±¡¢º¬ÓÐÁ½¸öδ֪Êý£¬²¢ÇÒËùº¬Î´ÖªÊýµÄÏîµÄ´ÎÊý¶¼ÊÇ1µÄ·½³Ì½Ð×ö¶þÔªÒ»´Î·½³Ì(linear equations of two unknowns) ¡£
£²¡¢º¬ÓÐÁ½¸öδ֪ÊýµÄÁ½¸öÒ»´Î·½³ÌËù×é³ÉµÄ·½³Ì×é½Ð×ö¶þÔªÒ»´Î·½³Ì×é¡£
£³¡¢¶þÔªÒ»´Î·½³Ì×éÖÐÁ½¸ö·½³ÌµÄ¹«¹²½â½Ð×ö¶þÔªÒ»´Î·½³Ì×éµÄ½â¡£ £´¡¢´úÈëÏûÔª·¨£º°Ñ¶þÔªÒ»´Î·½³ÌÖÐÒ»¸ö·½³ÌµÄÒ»¸öδ֪ÊýÓú¬ÁíÒ»¸öδ֪ÊýµÄʽ×Ó±íʾ³öÀ´£¬ÔÙ´øÈëÁíÒ»¸ö·½³Ì£¬ÊµÏÖÏûÔª£¬½ø¶øÇóµÃÕâ¸ö¶þÔªÒ»´Î·½³Ì×éµÄ½â¡£ÕâÖÖ·½·¨½Ð×ö´úÈëÏûÔª·¨£¬¼ò³Æ´úÈë·¨¡£ £µ¡¢¼Ó¼õÏûÔª·¨£ºµ±·½³ÌÖÐÁ½¸ö·½³ÌµÄijһδ֪ÊýµÄϵÊýÏàµÈ»ò»¥ÎªÏà·´Êýʱ£¬°ÑÕâÁ½¸ö·½³ÌµÄÁ½±ßÏà¼Ó»òÏà¼õÀ´ÏûÈ¥Õâ¸öδ֪Êý£¬´Ó¶ø½«¶þÔªÒ»´Î·½³Ì»¯ÎªÒ»ÔªÒ»´Î·½³Ì£¬×îºóÇóµÃ·½³Ì×éµÄ½â£¬ÕâÖֽⷽ³Ì×éµÄ·½·¨½Ð×ö¼Ó¼õÏûÔª·¨£¬¼ò³Æ¼Ó¼õ·¨.
£¶¡¢¶þÔªÒ»´Î·½³Ì×é½âÓ¦ÓÃÌâµÄÒ»°ã²½Öè¿É¸ÅÀ¨Îª¡°Éó¡¢ÕÒ¡¢ÁС¢½â¡¢´ð¡±Îå²½£¬¼´£º
£¨1£©Éó£ºÍ¨¹ýÉóÌ⣬°Ñʵ¼ÊÎÊÌâ³éÏó³ÉÊýѧÎÊÌ⣬·ÖÎöÒÑÖªÊýºÍδ֪Êý£¬²¢ÓÃ×Öĸ±íʾÆäÖеÄÁ½¸öδ֪Êý£» £¨2£©ÕÒ£ºÕÒ³öÄܹ»±íʾÌâÒâÁ½¸öÏàµÈ¹ØÏµ£»
£¨3£©ÁУº¸ù¾ÝÕâÁ½¸öÏàµÈ¹ØÏµÁгö±ØÐèµÄ´úÊýʽ£¬´Ó¶øÁгö·½³Ì×飻
7
Ëս̰æÆßÄ꼶ϲáÊýѧÆÚÄ©¿¼ÊÔ֪ʶµã×ܽá
£¨4£©½â£º½âÕâ¸ö·½³Ì×飬Çó³öÁ½¸öδ֪ÊýµÄÖµ£»
£¨5£©´ð£ºÔÚ¶ÔÇó³öµÄ·½³ÌµÄ½â×ö³öÊÇ·ñºÏÀíÅжϵĻù´¡ÉÏ£¬Ð´³ö´ð°¸.
8