stataѧϰ±Ê¼Ç

¾­¼ÃÊý¾ÝµÄÌØµãÓëÀàÐÍ¡£

1¡¢ºá½ØÃæÊý¾Ý£º¶à¸ö¾­¼Ã¸öÌåµÄ±äÁ¿ÔÚͬһʱ¼äµãÉϵÄȡֵ£¬Èç2012ÄêÖйú¸÷Ê¡µÄGDP 2¡¢Ê±¼äÊýÁÐÊý¾Ý£ºÖ¸µÄÊÇij¸ö¾­¼Ã¸öÌåµÄ±äÁ¿ÔÚ²»Í¬Ê±µãÉϵÄȡֵ£¬Èç1978-2012Äêɽ¶«Ê¡Ã¿ÄêµÄGDP

3¡¢Ãæ°åÊý¾Ý£º¶à¸ö¾­¼Ã¸öÌåµÄ±äÁ¿ÔÚ²»Í¬Ê±µãÉϵÄȡֵ£¬Èç1978-2012ÄêÖйú¸÷Ê¡µÄGDP

СÑù±¾OLS£¨×îС¶þ³Ë·¨£©£ºµ¥Ò»·½³ÌÏßÐԻعé×î³£¼û·½·¨

Ìõ¼þ£º½âÊͱäÁ¿ÓëÈŶ¯ÏîÕý½»¡¢ÈŶ¯ÏîÎÞ×ÔÏà¹Ø¡¢Í¬·½²î¡£ ÄâºÏÓŶȣººâÁ¿ÏßÐԻعéÄ£ÐͶÔÑù±¾Êý¾ÝµÄÄâºÏ³Ì¶È£¨R2£©£¬Ô½¸ß˵Ã÷Ä£ÐÍÄâºÏ³Ì¶ÈÔ½ºÃ¡£

µ¥ÏµÊýT¼ìÑ飺¶Ô»Ø¹é·½³ÌÈŶ¯ÏîµÄ¾ßÌå¸ÅÂʽøÐмÙÉè

ÏÔÖøÐÔˮƽ½øÐмìÑé

F¼ìÑ飺Õû¸ö»Ø¹é·½³ÌÊÇ·ñÏÔÖø STATA²Ù×÷¼ò½é£º

Èç¹ûÊý¾ÝÖаüº¬1949-10-01»ò1949/10/01µÄʱ¼ä±äÁ¿£¬µ¼Èëstataºó¿ÉÄܻᱻÊÓΪ×Ö·û´®£¬Òò´Ë¶ÔÓÚÈÕ¶ÈÊý¾Ý£¬¿ÉÒÔʹÓÃÃüÁîgen newvar=date(varname,YMD),½«Æäת»»ÎªÕûÊýÈÕÆÚ±äÁ¿£¬ÆäÖÐYMD˵Ã÷ԭʼÊý¾ÝµÄ¸ñʽΪÄêÔÂÈÕ£¬Èç¹ûԭʼÊý¾ÝµÄ¸ñʽΪÔÂÈÕÄêÔòʹÓÃMDY£»¶ÔÓÚÔ¶ÈÊý¾ÝÔògen newvar=monthly(varname,YM)¡£

.describe£ºÊý¾ÝµÄ¸Åò .drop keep£ºÉ¾³ýºÍ±£Áô .su£ºÍ³¼ÆÌØÕ÷ Pwcorr£º±äÁ¿Ö®¼äÏà¹ØÏµÊý Star£¨.05£©£º5%ÏÔÖøÐÔˮƽ gen:²úÉú g intc=log£¨tc£©£ºÈ¡×ÔÈ»¶ÔÊý. reg£ºOLS»Ø¹é .Vce£ºÐ­·½²î¾ØÕó reg¡£¡£¡££¬noc±íʾÔÚ½øÐлعéʱ²»Òª³£ÊýÏî

´óÑù±¾OLS£ºÖ»ÒªÇó½âÊͱäÁ¿ÓëͬÆÚµÄÈŶ¯ÏîÕý½»¼´¿É

Robust£ºÎȽ¡±ê×¼Îó£¬Èç¹û´æÔÚÒì·½²î£¬ÔòӦʹÓÃÎȽ¡±ê×¼Îó

×î´óËÆÈ»¹À¼Æ·¨£ºÈç¹û»Ø¹é·½³Ì´æÔÚ·ÇÏßÐÔ£¬ÔòʹÓÃ×î´óËÆÈ»¹À¼Æ·¨£¨MLE£©»ò·ÇÏßÐÔ×îС¶þ³Ë·¨£¨NLS£©

ÈýÀàÔÚ´óÑù±¾Ï½¥½øµÈ¼ÛµÄͳ¼Æ¼ìÑ飺Wald test LR£¨ËÆÈ»±È¼ìÑ飩 LM ²Ù×÷²½ÖèÈçÏ£ºsysuse auto£¨µ÷ÓÃÊý¾Ý¼¯£©

Hist mpg£¬normal£¨»­±äÁ¿mpgµÄÖ±·½Í¼£¬²¢ÓëÕý̬ÃܶȱȽϣ©

.1Density.020.04.06.081020Mileage (mpg)3040

Ö±·½Í¼ÏÔʾ£¬±äÁ¿mpgµÄ·Ö²¼ÓÚÕý̬·Ö²¼ÓÐÒ»¶¨²î¾à¡£ ±äÁ¿¿ÉÒÔÈ¡¶ÔÊý½â¾ö·ÇÕý̬·Ö²¼µÄÎÊÌâ¡£

Òì·½²îÓëGLS£¨¹ãÒå×îС¶þ³Ë·¨£©

Òì·½²îµÄ¼ìÑ飺¿´²Ð²îͼ¡¢»³ÌؼìÑ飨white test£©¡¢BP¼ìÑ飨Breusch and Pagan£© Òì·½²îµÄ´¦Àí£º1¡¢OLS+ÎȽ¡±ê×¼Îó£¨×îºÃµÄ£© 2¡¢¹ãÒå×îС¶þ³Ë·¨£¨GLS£© 3¡¢¼ÓȨ×îС¶þ³Ë·¨£¨WLS£© ʵÀý²Ù×÷£º

1¡¢ ʹÓÃÊý¾Ý£ºuse nerlove.dta,clear

2¡¢ reg intc inq inpl inpk inpf£¨½øÐлع飩 3¡¢

Source SS df MS Number of obs = 145 F( 4, 140) = 437.90 Model 269.524728 4 67.3811819 Prob > F = 0.0000 Residual 21.5420958 140 .153872113 R-squared = 0.9260 Adj R-squared = 0.9239 Total 291.066823 144 2.02129738 Root MSE = .39227 intc Coef. Std. Err. t P>|t| [95% Conf. Interval] inq .7209135 .0174337 41.35 0.000 .6864462 .7553808 inpl .4559645 .299802 1.52 0.131 -.1367602 1.048689 inpk -.2151476 .3398295 -0.63 0.528 -.8870089 .4567136 inpf .4258137 .1003218 4.24 0.000 .2274721 .6241554 _cons -3.566513 1.779383 -2.00 0.047 -7.084448 -.0485779 4¡¢ »­²Ð²îͼ£ºrvfplot

2Residuals-101-20Fitted values24

ÉÏͼ¿ÉÒÔ·¢ÏÖµ±ÄâºÏÖµ½ÏСʱ£¬ÈŶ¯Ïî·½²î½Ï´ó£¬¼ÌÐø¿¼²ì²Ð²îÓë½âÊͱäÁ¿inqµÄÉ¢µãͼ£ºrvpplot inq£¬½á¹ûÓëÉÏͼ¼¸ºõÒ»Ö£¬¿ÉÄÜ´æÔÚÒì·½²î£¬¼´ÈŶ¯ÏîµÄ·½²îËæ×Ź۲âÖµ¶ø±ä¡£

5¡¢ Íê³É»Ø¹éºó£¬½øÐл³ÌؼìÑ飺estat imtest£¬white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity chi2(14) = 73.88 Prob > chi2 = 0.0000Cameron & Trivedi's decomposition of IM-test Source chi2 df p Heteroskedasticity 73.88 14 0.0000 Skewness 22.79 4 0.0001 Kurtosis 2.62 1 0.1055 Total 99.29 19 0.0000

PÖµÏÔÖø£¬ÈÏΪ´æÔÚÒì·½²î 6¡¢Íê³É»Ø¹éºó£¬½øÐÐBP¼ìÑ飺estat hettest,iid estat hottest,rhs iid estat hottest inq,iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: inq inpl inpk inpf chi2(4) = 36.16 Prob > chi2 = 0.0000

ÈýÖÖÐÎʽµÄ¼ìÑ鶼ǿÁҾܾøÍ¬·½²îµÄÔ­¼ÙÉ裬´æÔÚÒì·½²î£¨ÕâÀïÖ»·ÅÒ»¸öÐÎʽµÄ¼ìÑé½á¹û£© 7¡¢ ´¦ÀíÒì·½²î

×ÔÏà¹Ø £ºÈŶ¯ÏîÖ®¼ä×ÔÏà¹Ø

×ÔÏà¹ØµÄÀý×Ó£º1¡¢Ê±¼äÐòÁÐÊý¾ÝÖÐͨ³£¾ßÓÐijÖÖÁ¬ÐøÐԺͳ־ÃÐÔ£¬ÈçÏàÁÚÁ½ÄêµÄGDPÔö³¤ÂÊ£»2¡¢½ØÃæÊý¾ÝÖÐÏàÁڵĹ۲ⵥλ֮¼ä¿ÉÄÜ´æÔÚÒç³öЧӦ£¬ÈçÏàÁÚµØÇøµÄũҵ²úÁ¿ÊÕµ½ÀàËÆÌìÆø±ä»¯µÄÓ°Ï죻3¡¢¶ÔÊý¾ÝµÄÈËΪ´¦ÀíÈçÊý¾ÝÖаüº¬Òƶ¯Æ½¾ùÊýµÈ£»4¡¢Èç¹ûÄ£ÐÍÉ趨ÖÐÒÅ©ÁËij¸ö×ÔÏà¹ØµÄ½âÊͱäÁ¿²¢±»ÄÉÈëµ½ÈŶ¯ÏîÖУ¬Ôò»áÒýÆðÈŶ¯ÏîµÄ×ÔÏà¹Ø¡£

×ÔÏà¹ØµÄ¼ìÑ飺1¡¢»­Í¼£¨²»ÍƼö£©2¡¢BG¼ìÑéestat bgodfrey 3¡¢BOX-Pierce Q¼ìÑé 4¡¢DW¼ìÑé estat dwatson. ¼ìÑé¶¼ÒªÔÚOLS×öÍêºó²ÅÄÜ×ö¡£

×ÔÏà¹ØµÄ´¦Àí£º1¡¢Ê¹ÓÃOLS+Òì·½²î×ÔÏà¹ØÎȽ¡µÄ±ê×¼Îó£»2¡¢OLS+¾ÛÀàÎȽ¡µÄ±ê×¼Îó£»3¡¢Ê¹ÓÿÉÐйãÒå×îС¶þ³Ë·¨£¨FGLS£©£»4¡¢ÐÞ¸ÄÄ£ÐÍÉ趨

×ÔÏà¹Ø´¦ÀíʵÀý£º1¡¢Ê¹ÓÃÊý¾Ý icecream È»ºó½øÐлعé

. reg consumption temp price income Source SS df MS Number of obs = 30 F( 3, 26) = 22.17 Model .090250523 3 .030083508 Prob > F = 0.0000 Residual .035272835 26 .001356647 R-squared = 0.7190 Adj R-squared = 0.6866 Total .125523358 29 .004328392 Root MSE = .03683 consumption Coef. Std. Err. t P>|t| [95% Conf. Interval] temp .0034584 .0004455 7.76 0.000 .0025426 .0043743 price -1.044413 .834357 -1.25 0.222 -2.759458 .6706322 income .0033078 .0011714 2.82 0.009 .0008999 .0057156 _cons .1973149 .2702161 0.73 0.472 -.3581223 .752752 BG¼ìÑé

. estat bgodfreyBreusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 1 4.237 1 0.0396 H0: no serial correlationÏÔÖø ¾Ü¾øÁËÔ­¼ÙÉèÎÞ×ÔÏà¹Ø£¬ÔòÈÏΪ´æÔÚ×ÔÏà¹Ø Q¼ìÑ飨ÂÔ£©¡¢DW¼ìÑéÈçÏÂ

. estat dwatsonDurbin-Watson d-statistic( 4, 30) = 1.021169DW=1.02 ¾àÀë2ºÜÔ¶ ¿ÉÒÔÈÏΪ´æÔÚ×ÔÏà¹Ø¡£

ÓÉÒÔÉϵļìÑé¿ÉÒÔ¿´³öÈŶ¯ÏîÖ®¼ä´æÔÚ×ÔÏà¹Ø£¬Òò´ËOLSÌṩµÄ±ê×¼ÎóÊDz»×¼È·µÄ£¬Ó¦

ËÄ·ÖÖ®Ò»

ʹÓÃÒì·½²î×ÔÏà¹ØÎȽ¡±ê×¼Îó£¬ÓÉÓÚÑù±¾Îª30¸ö£¬n=2.34£¬¹ÊÈ¡NEWey-West¹À¼ÆÁ¿µÄÖͺóֵΪP=3£¬½á¹ûÈçÏ£º

. newey consumption temp price income,lag(3)Regression with Newey-West standard errors Number of obs = 30maximum lag: 3 F( 3, 26) = 27.63 Prob > F = 0.0000 Newey-West consumption Coef. Std. Err. t P>|t| [95% Conf. Interval] temp .0034584 .0004002 8.64 0.000 .0026357 .0042811 price -1.044413 .9772494 -1.07 0.295 -3.053178 .9643518 income .0033078 .0013278 2.49 0.019 .0005783 .0060372 _cons .1973149 .3378109 0.58 0.564 -.4970655 .8916952

ÉÏͼÏÔʾ±ê×¼ÎóÓëOLS±ê×¼ÎóÎÞ¶à´óÇø±ð£¬Òò´Ë½«Öͺó½×ÊýÔö¼ÓΪ6£¬

. newey consumption temp price income,lag(6)Regression with Newey-West standard errors Number of obs = 30maximum lag: 6 F( 3, 26) = 52.97 Prob > F = 0.0000 Newey-West consumption Coef. Std. Err. t P>|t| [95% Conf. Interval] temp .0034584 .0003504 9.87 0.000 .0027382 .0041787 price -1.044413 .9821798 -1.06 0.297 -3.063313 .9744864 income .0033078 .00132 2.51 0.019 .0005945 .006021 _cons .1973149 .3299533 0.60 0.555 -.4809139 .8755437

´ÓÉÏͼ¿ÉÒÔ¿´µ½ÎÞÂ۽ضϲÎÊýÊÇ3»¹ÊÇ6£¬±ê×¼Î󶼱仯²»´ó£¬±È½ÏÎȽ¡¡£

´ËÍâ£¬Ç°ÃæÌáµ½×ÔÏà¹Ø´æÔÚ¿ÉÄÜÊÇÒòΪģÐÍÉ趨²»ÕýÈ·£¬Òò´Ë¿¼ÂÇÔÚ½âÊͱäÁ¿ÖмÓÈëtempµÄÖͺóÖµ£¬È»ºóÔÙ½øÐÐOLS»Ø¹é£º

. reg consumption temp L.temp price income Source SS df MS Number of obs = 29 F( 4, 24) = 28.98 Model .103387183 4 .025846796 Prob > F = 0.0000 Residual .021406049 24 .000891919 R-squared = 0.8285 Adj R-squared = 0.7999 Total .124793232 28 .004456901 Root MSE = .02987 consumption Coef. Std. Err. t P>|t| [95% Conf. Interval] temp --. .0053321 .0006704 7.95 0.000 .0039484 .0067158 L1. -.0022039 .0007307 -3.02 0.006 -.0037119 -.0006959 price -.8383021 .6880205 -1.22 0.235 -2.258307 .5817025 income .0028673 .0010533 2.72 0.012 .0006934 .0050413 _cons .1894822 .2323169 0.82 0.423 -.2899963 .6689607È»ºóʹÓÃBG¼ìÑéÊÇ·ñ´æÔÚ×ÔÏà¹Ø£º

. estat bgoBreusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi2 1 0.120 1 0.7292 H0: no serial correlation

½á¹ûÏÔʾÎÞ×ÔÏà¹Ø£¬¶øºóDWÖµÒ²¸Ä½øÎª1.58£¬Òò´ËÐÞ¸ÄÄ£ÐͺóÈŶ¯Ïî»ù±¾²»ÔÙ´æÔÚ×ÔÏà¹Ø¡£

Ä£ÐÍÉ趨ÓëÊý¾ÝÎÊÌâ

ÒÅ©±äÁ¿£º±»½âÊͱäÁ¿¿ÉÄܱ»¼ÓÈëµ½ÈŶ¯ÏîÖÐ

½â¾ö·½Ê½£º¼ÓÈ뾡¿ÉÄܶàµÄ¿ØÖƱäÁ¿£»Ê¹ÓôúÀí±äÁ¿£»¹¤¾ß±äÁ¿·¨£»Ê¹ÓÃÃæ°åÊý¾Ý£»Ëæ»úÊÔÑé»ò×ÔȻʵÑé¡£

ÆäÖдúÀí±äÁ¿Ó¦Âú×ãÁ½¸öÌõ¼þ£º¶àÓàÐÔ£¬½öͨ¹ýÓ°ÏìÒÅ©±äÁ¿¶ø×÷ÓÃÓÚ±»½âÊͱäÁ¿£»Ê£Óà¶ÀÁ¢ÐÔ£¬ÒÅ©±äÁ¿Öв»ÊÜ´úÀí±äÁ¿Ó°ÏìµÄÊ£Óಿ·ÖÓëËùÓнâÊͱäÁ¿¾ù²»Ïà¹Ø¡£

¶àÖØ¹²ÏßÐÔ£ºÄ³Ò»½âÊͱäÁ¿¿ÉÒÔÓÉÆäËû½âÊͱäÁ¿ÏßÐÔ±í³ö£¬¼´´æÔÚ¶àÖØ¹²ÏßÐÔ¡£ ¼ì²â£ºÏȻع飬Ȼºóestat vif VIFµÍÓÚ10¼´²»´æÔÚ¶àÖØ¹²ÏßÐÔ¡£

¹¤¾ß±äÁ¿£¬2SLSÓëGMM

¹¤¾ß±äÁ¿µÄÊÊÓÃÌõ¼þ£ºOLS³ÉÁ¢µÄ×îÖØÒªÌõ¼þÊǽâÊͱäÁ¿ÓëÈŶ¯Ïî²»Ïà¹Ø£¬Èç³öÏÖÏà¹Ø¿ÉÒÔʹÓù¤¾ß±äÁ¿·¨À´½â¾ö¡£ÆäÖÐÔÚ¼ÆÁ¿¾­¼ÃѧÖУ¬½«ËùÓÐÓëÈŶ¯ÏîÏà¹ØµÄ½âÊͱäÁ¿³ÉΪÄÚÉú±äÁ¿£¬Ò»¸öÓÐЧµÄ¹¤¾ß±äÁ¿Ó¦Âú×ãÒ»ÏÂÁ½¸öÌõ¼þ£º1¡¢¹¤¾ß±äÁ¿ÓëÄÚÉú½âÊͱäÁ¿Ïà¹Ø£»2¡¢¹¤¾ß±äÁ¿ÓëÈŶ¯Ïî²»Ïà¹Ø¡£

¹ý³Ì£º´«Í³µÄ¹¤¾ß±äÁ¿·¨Ò»°ãͨ¹ý¶þ½×¶Î×îС¶þ³Ë·¨£¨2SLS»òTSLS£©À´ÊµÏÖ£º1¡¢ÓÃÄÚÉú½âÊͱäÁ¿¶Ô¹¤¾ß±äÁ¿½øÐлع飬µÃµ½ÄâºÏÖµPt£¨Ptʵ¼ÊÉÏÊÇÄÚÉú±äÁ¿ÖеÄÍâÉú²¿·Ö£¬¶øÁíÒ»²¿·ÖÊÇÓëÈŶ¯ÏîÏà¹Ø£©£»2¡¢Óñ»½âÊͱäÁ¿¶ÔµÚÒ»½×¶ÎµÄÄâºÏÖµPt½øÐлع顣 ¹¤¾ß±äÁ¿µÄ¼ì²â£º1¡¢²»¿Éʶ±ð¼ìÑ飻2¡¢Èõ¹¤¾ß±äÁ¿¼ìÑ飻3¡¢¹ý¶Èʶ±ð¼ìÑ飨estat overid£©¡£ ºÀ˹Âü¼ìÑ飺ԭ¼ÙÉèΪËùÓнâÊͱäÁ¿¾ùΪÍâÉú±äÁ¿£¬Èô¾Ü¾ø¼ÙÉèµÄ»°Ó¦¸ÃʹÓù¤¾ß±äÁ¿·¨£¬Èô½ÓÊܵĻ°Ê¹ÓÃOLS¡£ ºÀ˹Âü¹ý³Ì£ºreg X1 x2

Estimates store ols(´æ´¢OLSµÄ½á¹û)

Ivregress 2sls y x1(x2=z1 z2)(¼ÙÉ軳ÒÉX2ΪÄÚÉú±äÁ¿) Estimates store iv(´æ´¢2SLS½á¹û)

Hausman iv ols,constant sigmamore(¸ù¾Ý´æ´¢µÄ½á¹û½øÐкÀ˹Âü¼ìÑé)

Èô´æÔÚÒì·½²îµÄÎÊÌ⣬Ôò¿ÉÒÔʹÓöűö-Îâ-ºÀ˹Âü¼ìÑé¡£ËüÔÚÒì·½²îµÄÇé¿öÏÂÒ²ÊÊÓá£

ÔÚÇòÐÎÈŶ¯ÏîµÄ¼Ù¶¨Ï£¬2SLS×îÓÐЧ£¬µ«Èç¹ûÈŶ¯Ïî´æÔÚÒì·½²î»ò×ÔÏà¹Ø£¬Ôò´æÔÚGMM¹ãÒ徨¹À¼ÆÕâÒ»¸üÓÐЧµÄ·½·¨£ºÊ×ÏÈʹÓÃ2SLSµÃµ½²Ð²î£¬È»ºóGMM£¬µ«ÊÇÔÚʵ¼Ê²Ù×÷ÖÐʹ

Óõü´ú·¨¡£

GMMµÄÃüÁ

ivregress gmm y x1(x2=z1 z2) Á½²½×îÓÅGMM

ivregress gmm y x1 (x2=z1 z2)£¬igmm µü´úGMM estat overid ¹ý¶Èʶ±ð¼ìÑé

¹¤¾ß±äÁ¿·¨µÄSTATAÃüÁîºÍʵÀý£º Use grilic.dta,clear Sum

È»ºó¿¼²ìÖÇÉ̺ÍÊܽÌÓýÄêÏÞµÄÏà¹Ø¹ØÏµ£¨±¾ÎÄÑо¿µÄÊǹ¤×ÊÓëÊܽÌÓýÄêÏ޵ĹØÏµ£©

. pwcorr iq s,sig iq s iq 1.0000 s 0.5131 1.0000 0.0000

¾ßÓнÏÇ¿µÄÕýÏà¹Ø¹ØÏµ¡£

È»ºó×÷Ϊһ¸ö²ÎÕÕϵ£¬½øÐÐOLS»Ø¹é²¢Ê¹ÓÃÎȽ¡±ê×¼Îó¡£

. reg lw s expr tenure rns smsa,rLinear regression Number of obs = 758 F( 5, 752) = 84.05 Prob > F = 0.0000 R-squared = 0.3521 Root MSE = .34641 Robust lw Coef. Std. Err. t P>|t| [95% Conf. Interval] s .102643 .0062099 16.53 0.000 .0904523 .1148338 expr .0381189 .0066144 5.76 0.000 .025134 .0511038 tenure .0356146 .0079988 4.45 0.000 .0199118 .0513173 rns -.0840797 .029533 -2.85 0.005 -.1420566 -.0261029 smsa .1396666 .028056 4.98 0.000 .0845893 .194744 _cons 4.103675 .0876665 46.81 0.000 3.931575 4.275775

½ÌÓýͶ×ÊÂÊ10.26%£¬ÏÔÈ»¹ý¸ß£¬¿ÉÄÜÊÇÒÅ©Á˱äÁ¿ÄÜÁ¦£¬Ê¹µÃÄÜÁ¦¶Ô¹¤×ʵűÏ×Ò²±»ÄÉÈë½ÌÓýµÄ¹±Ïס£

Òò´ËʹÓÃiq×÷ΪÄÜÁ¦µÄ´úÀí±äÁ¿£¬ÔÙ½øÐÐOLS»Ø¹é£¬¿ÉÒÔ·¢ÏÖ¼ÓÈëiq×÷ΪÄÜÁ¦µÄ´úÀí±äÁ¿ºó£¬½ÌÓýͶ×ʻر¨ÂʽµµÍÁËһЩ£¬µ«»¹Êǹý¸ß¡££¨ÈçÏÂͼ£©

. reg lw s iq expr tenure rns smsa,rLinear regression Number of obs = 758 F( 6, 751) = 71.89 Prob > F = 0.0000 R-squared = 0.3600 Root MSE = .34454 Robust lw Coef. Std. Err. t P>|t| [95% Conf. Interval] s .0927874 .0069763 13.30 0.000 .0790921 .1064826 iq .0032792 .0011321 2.90 0.004 .0010567 .0055016 expr .0393443 .0066603 5.91 0.000 .0262692 .0524193 tenure .034209 .0078957 4.33 0.000 .0187088 .0497092 rns -.0745325 .0299772 -2.49 0.013 -.1333815 -.0156834 smsa .1367369 .0277712 4.92 0.000 .0822186 .1912553 _cons 3.895172 .1159286 33.60 0.000 3.667589 4.122754

ʹÓÃiqÀ´¶ÈÁ¿ÄÜÁ¦´æÔÚ²âÁ¿Îó²î£¬Òò´ËiqΪÄÚÉú±äÁ¿£¬¿¼ÂÇʹÓÃmed kww mrt age×÷ΪiqµÄ¹¤¾ß±äÁ¿£¬½øÐÐ2SLS»Ø¹é ,²¢Ê¹ÓÃÎȽ¡±ê×¼Îó¡£

. ivregress 2sls lw s expr tenure rns smsa (iq=med kww mrt age),rInstrumental variables (2SLS) regression Number of obs = 758 Wald chi2(6) = 355.73 Prob > chi2 = 0.0000 R-squared = 0.2002 Root MSE = .38336 Robust lw Coef. Std. Err. z P>|z| [95% Conf. Interval] iq -.0115468 .0056376 -2.05 0.041 -.0225962 -.0004974 s .1373477 .0174989 7.85 0.000 .1030506 .1716449 expr .0338041 .0074844 4.52 0.000 .019135 .0484732 tenure .040564 .0095848 4.23 0.000 .0217781 .05935 rns -.1176984 .0359582 -3.27 0.001 -.1881751 -.0472216 smsa .149983 .0322276 4.65 0.000 .0868182 .2131479 _cons 4.837875 .3799432 12.73 0.000 4.0932 5.58255 Instrumented: iqInstruments: s expr tenure rns smsa med kww mrt age

ÊܽÌÓýÄêÏ޻ر¨ÉÏÉý£¬¶øiq¾¹È»ÊǸºÏà¹Ø£¬Òò´Ë²»¿ÉÐÅ£¬Ê¹Óù¤¾ß±äÁ¿·¨ÐèÒªÑéÖ¤Æä¹¤¾ß±äÁ¿µÄÓÐЧÐÔÒò´Ë½øÐйý¶Èʶ±ðÀ´¼ìÑéËùÓй¤¾ß±äÁ¿ÊÇ·ñÍâÉú¡£

. estat overid Test of overidentifying restrictions: Score chi2(3) = 51.5449 (p = 0.0000)

ÉÏͼÏÔʾÓÐЩ¹¤¾ß±äÁ¿²»ºÏ¸ñ£¬ÓëÈŶ¯ÏîÏà¹Ø¡£»³ÒÉmrtºÍage²»Âú×ãÍâÉúÐÔ£¬Òò´Ë½öÊÊÓÃmedºÍkww×÷ΪiqµÄ¹¤¾ß±äÁ¿£¬ÔٴνøÐÐ2SLS»Ø¹é£¬Í¬Ê±ÏÔʾµÚÒ»½×¶ÎµÄ»Ø¹é½á¹û¡£

. ivregress 2sls lw s expr tenure rns smsa (iq=med kww),r firstFirst-stage regressions Number of obs = 758 F( 7, 750) = 47.74 Prob > F = 0.0000 R-squared = 0.3066 Adj R-squared = 0.3001 Root MSE = 11.3931 Robust iq Coef. Std. Err. t P>|t| [95% Conf. Interval] s 2.467021 .2327755 10.60 0.000 2.010052 2.92399 expr -.4501353 .2391647 -1.88 0.060 -.9196471 .0193766 tenure .2059531 .269562 0.76 0.445 -.3232327 .7351388 rns -2.689831 .8921335 -3.02 0.003 -4.441207 -.938455 smsa .2627416 .9465309 0.28 0.781 -1.595424 2.120907 med .3470133 .1681356 2.06 0.039 .0169409 .6770857 kww .3081811 .0646794 4.76 0.000 .1812068 .4351553 _cons 56.67122 3.076955 18.42 0.000 50.63075 62.71169 Instrumental variables (2SLS) regression Number of obs = 758 Wald chi2(6) = 370.04 Prob > chi2 = 0.0000 R-squared = 0.2775 Root MSE = .36436 Robust lw Coef. Std. Err. z P>|z| [95% Conf. Interval] iq .0139284 .0060393 2.31 0.021 .0020916 .0257653 s .0607803 .0189505 3.21 0.001 .023638 .0979227 expr .0433237 .0074118 5.85 0.000 .0287968 .0578505 tenure .0296442 .008317 3.56 0.000 .0133432 .0459452 rns -.0435271 .0344779 -1.26 0.207 -.1111026 .0240483 smsa .1272224 .0297414 4.28 0.000 .0689303 .1855146 _cons 3.218043 .3983683 8.08 0.000 2.437256 3.998831 Instrumented: iqInstruments: s expr tenure rns smsa med kww

ÈçÉÏͼ£¬µÚÒ»²¿·Ö»Ø¹éÊÇʹÓÃÄÚÉú½âÊͱäÁ¿¶Ô¹¤¾ß±äÁ¿½øÐлع飬µÚ¶þ²¿·ÖÓñ»½âÊͱäÁ¿¶ÔµÚÒ»½×¶Î»Ø¹éµÄÄâºÏÖµ½øÐлع顣

ÉÏͼÖнÌÓý»Ø±¨ÂʽÏΪºÏÀí£¬¶øÇÒiqϵÊýҲΪÕûÊý£¬ÔٴνøÐйý¶Èʶ±ð¼ìÑé¡£

. estat overid Test of overidentifying restrictions: Score chi2(1) = .151451 (p = 0.6972)

½á¹ûûÓоܾøÍâÉúµÄÔ­¼ÙÉè¡£

½ÓÏÂÀ´¼ÌÐø¿¼²ì×÷Ϊ¹¤¾ß±äÁ¿µÄµÚ¶þ¸öÌõ¼þ£¬¼´¹¤¾ß±äÁ¿ÓëÄÚÉú±äÁ¿µÄÏà¹ØÐÔ£¬ÓɵÚÒ»½×¶ÎµÄ»Ø¹é¿´³ö£¬medºÍkww¶ÔiqÓнϺõĽâÊÍÁ¦£¬µ«ÎªÎȽ¡Æð¼û£¬»¹ÊÇʹÓöÔÈõ¹¤¾ß±äÁ¿¸ü²»Ãô¸ÐµÄÓÐÏÞÐÅÏ¢×î´óËÆÈ»·¨£¨LIML£©¡£

. ivregress liml lw s expr tenure rns smsa (iq=med kww),rInstrumental variables (LIML) regression Number of obs = 758 Wald chi2(6) = 369.62 Prob > chi2 = 0.0000 R-squared = 0.2768 Root MSE = .36454 Robust lw Coef. Std. Err. z P>|z| [95% Conf. Interval] iq .0139764 .0060681 2.30 0.021 .0020831 .0258697 s .0606362 .019034 3.19 0.001 .0233303 .0979421 expr .0433416 .0074185 5.84 0.000 .0288016 .0578816 tenure .0296237 .008323 3.56 0.000 .0133109 .0459364 rns -.0433875 .034529 -1.26 0.209 -.1110631 .0242881 smsa .1271796 .0297599 4.27 0.000 .0688512 .185508 _cons 3.214994 .4001492 8.03 0.000 2.430716 3.999272 Instrumented: iqInstruments: s expr tenure rns smsa med kww

ÒÔÉϽá¹ûÓë2SLS·Ç³£½Ó½ü£¬²àÃæÑéÖ¤Á˲»´æÔÚÈõ¹¤¾ß±äÁ¿¡£

»¹ÓУ¬Ê¹Óù¤¾ß±äÁ¿·¨µÄǰÌáÊÇ´æÔÚÄÚÉú½âÊͱäÁ¿£¬Òò´Ë½øÐкÀ˹Âü¼ìÑé¡£

. qui reg lw iq s expr tenure rns smsa. estimates store ols. qui ivregress 2sls lw s expr tenure rns smsa (iq=med kww). estimates store iv. hausman iv ols,constant sigmamoreNote: the rank of the differenced variance matrix (1) does not equal the number of coefficients being tested (7); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. Coefficients (b) (B) (b-B) sqrt(diag(V_b-V_B)) iv ols Difference S.E. iq .0139284 .0032792 .0106493 .0054318 s .0607803 .0927874 -.032007 .0163254 expr .0433237 .0393443 .0039794 .0020297 tenure .0296442 .034209 -.0045648 .0023283 rns -.0435271 -.0745325 .0310054 .0158145 smsa .1272224 .1367369 -.0095145 .0048529 _cons 3.218043 3.895172 -.6771285 .3453751 b = consistent under Ho and Ha; obtained from ivregress B = inconsistent under Ha, efficient under Ho; obtained from regress Test: Ho: difference in coefficients not systematic chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 3.84 Prob>chi2 = 0.0499 (V_b-V_B is not positive definite).

½á¹ûÏÔʾ¾Ü¾øÁËÔ­¼ÙÉ裬Òò´Ë´æÔÚiqΪÄÚÉú±äÁ¿£¬ÓÖÒòΪ´«Í³µÄºÀ˹Âü¼ìÑéÔÚÒì·½²îµÄÇé¿öϲ»³ÉÁ¢£¬ÏÂÃæ½øÐÐÒì·½²îÎȽ¡µÄDWH¼ìÑ飺

Tests of endogeneity Ho: variables are exogenous Durbin (score) chi2(1) = 3.87962 (p = 0.0489) Wu-Hausman F(1,750) = 3.85842 (p = 0.0499)

DWHµÄPֵСÓÚ0.05£¬¹Ê¿ÉÒÔÈÏΪiqΪÄÚÉú½âÊͱäÁ¿¡£

ÁíÍâÈç¹û´æÔÚÒì·½²î£¬ÔòGMM±È2SLS¸üÓÐЧ£¬Òò´Ë½øÐÐ×îÓÅGMM¹À¼Æ£º

. ivregress gmm lw s expr tenure rns smsa (iq=med kww)Instrumental variables (GMM) regression Number of obs = 758 Wald chi2(6) = 372.75 Prob > chi2 = 0.0000 R-squared = 0.2750GMM weight matrix: Robust Root MSE = .36499 Robust lw Coef. Std. Err. z P>|z| [95% Conf. Interval] iq .0140888 .0060357 2.33 0.020 .0022591 .0259185 s .0603672 .0189545 3.18 0.001 .0232171 .0975174 expr .0431117 .0074112 5.82 0.000 .0285861 .0576373 tenure .0299764 .0082728 3.62 0.000 .013762 .0461908 rns -.044516 .0344404 -1.29 0.196 -.1120179 .0229859 smsa .1267368 .0297633 4.26 0.000 .0684018 .1850718 _cons 3.207298 .398083 8.06 0.000 2.427069 3.987526 Instrumented: iqInstruments: s expr tenure rns smsa med kww

ÉÏͼÏÔʾÁ½²½×îÓÅGMMÓë2SLSºÜ½Ó½ü£¬ÔÙ½øÐйý¶Èʶ±ð¼ìÑé

. estat overid Test of overidentifying restriction: Hansen's J chi2(1) = .151451 (p = 0.6972)½á¹û½ÓÊÜÔ­¼ÙÉ裬˵Ã÷ËùÓй¤¾ß±äÁ¿ÍâÉú¡£

È»ºóÔÙ×öµü´úGMM£ºÏÂͼÏÔʾÓëÁ½²½GMMϵÊý¹À¼ÆÖµÏà²î²»´ó¡£

. ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmmIteration 1: change in beta = 1.753e-05 change in W = 1.100e-02Iteration 2: change in beta = 4.872e-08 change in W = 7.880e-05Iteration 3: change in beta = 2.507e-10 change in W = 2.303e-07Instrumental variables (GMM) regression Number of obs = 758 Wald chi2(6) = 372.73 Prob > chi2 = 0.0000 R-squared = 0.2750GMM weight matrix: Robust Root MSE = .36499 Robust lw Coef. Std. Err. z P>|z| [95% Conf. Interval] iq .0140901 .0060357 2.33 0.020 .0022603 .02592 s .0603629 .0189548 3.18 0.001 .0232122 .0975135 expr .0431101 .0074113 5.82 0.000 .0285841 .057636 tenure .0299752 .0082729 3.62 0.000 .0137606 .0461898 rns -.0445114 .0344408 -1.29 0.196 -.1120142 .0229913 smsa .1267399 .0297637 4.26 0.000 .0684041 .1850757 _cons 3.207224 .3980878 8.06 0.000 2.426986 3.987462 Instrumented: iqInstruments: s expr tenure rns smsa med kww

Èç¹ûÏ£Íû½«ÒÔÉϸ÷¹À¼ÆÖµ¼¶±ê×¼ÎóŪÔÚͬһÕűíÖУº

qui reg lw s expr tenure rns smsa,r . est sto ols_no_iq . qui reg lw iq s expr tenure rns smsa,r . est sto ols_with_iq . qui ivregress 2sls lw s expr tenure rns smsa (iq=med kww),r . est sto tsls . qui ivregress liml lw s expr tenure rns smsa (iq=med kww),r . est sto liml . qui ivregress gmm lw s expr tenure tns smsa (iq=med kww) . qui ivregress gmm lw s expr tenure rns smsa (iq=med kww) . est sto gmm . qui ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmm . est sto igmm . estimates table ols_no_iq ols_with_iq tsls liml gmm igmm,b se ÆäÖУ¬Ñ¡Ïîb±íʾÏÔʾ»Ø¹éϵÊý£¬se±íʾÏÔʾ±ê×¼Îó²î Variable ols_no_iq ols_with~q tsls liml gmm igmm s .10264304 .09278735 .06078035 .06063623 .06036723 .06036285 .00620988 .00697626 .01895051 .01903397 .01895452 .01895478 expr .0381189 .03934425 .04332367 .04334159 .04311171 .04311006 .00661439 .00666033 .00741179 .0074185 .00741117 .00741133 tenure .03561456 .03420896 .02964421 .02962365 .02997643 .02997521 .00799884 .00789567 .00831697 .00832297 .00827281 .00827289 rns -.08407974 -.07453249 -.04352713 -.04338751 -.04451599 -.04451145 .02953295 .02997719 .03447789 .03452902 .03444039 .03444082 smsa .13966664 .13673691 .12722244 .1271796 .12673682 .12673991 .02805598 .02777116 .02974144 .02975994 .0297633 .02976369 iq .00327916 .01392844 .01397639 .01408883 .01409011 .00113212 .00603931 .00606812 .00603567 .00603575 _cons 4.103675 3.8951718 3.2180433 3.2149943 3.2072978 3.2072239 .08766646 .11592863 .39836829 .40014925 .39808304 .39808779 legend: b/seÈç¹ûÏ£ÍûÓÃÒ»¿ÅÐDZíʾ10%ÏÔÖøÐÔˮƽµÈµÈ£º

. estimates table ols_no_iq ols_with_iq tsls liml gmm igmm,star(0.1 0.05 0.01) Variable ols_no_iq ols_with_iq tsls liml gmm s .10264304*** .09278735*** .06078035*** .06063623*** .06036723*** expr .0381189*** .03934425*** .04332367*** .04334159*** .04311171*** tenure .03561456*** .03420896*** .02964421*** .02962365*** .02997643*** rns -.08407974*** -.07453249** -.04352713 -.04338751 -.04451599 smsa .13966664*** .13673691*** .12722244*** .1271796*** .12673682*** iq .00327916*** .01392844** .01397639** .01408883** _cons 4.103675*** 3.8951718*** 3.2180433*** 3.2149943*** 3.2072978*** legend: * p<.1; ** p<.05; *** p<.01 Variable igmm s .06036285*** expr .04311006*** tenure .02997521*** rns -.04451145 smsa .12673991*** iq .01409011** _cons 3.2072239*** legend: * p<.1; ** p<.05; *** p<.01

Èç¹ûÏëÏñÂÛÎÄÒ»ÑùÏÔʾ£¬ÔòÈçÏÂ±í£ºse±íʾÔÚÀ¨»¡ÖÐÏÔʾ±ê×¼Îó²î£¬p±íʾÏÔʾPÖµ£¬r2±íʾÏÔʾRµÄƽ·½£¬mtitleÏÔʾʹÓÃÄ£ÐÍÃû×Ö£¬

. esttab ols_no_iq ols_with_iq tsls liml gmm igmm,se r2 mtitle star > (1) (2) (3) (4) (5) (6) > ols_no_iq ols_with_iq tsls liml gmm igmm > > s 0.103*** 0.0928*** 0.0608** 0.0606** 0.0604** 0.0604*> * (0.00621) (0.00698) (0.0190) (0.0190) (0.0190) (0.0190) > expr 0.0381*** 0.0393*** 0.0433*** 0.0433*** 0.0431*** 0.0431*> ** (0.00661) (0.00666) (0.00741) (0.00742) (0.00741) (0.00741) > tenure 0.0356*** 0.0342*** 0.0296*** 0.0296*** 0.0300*** 0.0300*> ** (0.00800) (0.00790) (0.00832) (0.00832) (0.00827) (0.00827) > rns -0.0841** -0.0745* -0.0435 -0.0434 -0.0445 -0.0445 > (0.0295) (0.0300) (0.0345) (0.0345) (0.0344) (0.0344) > smsa 0.140*** 0.137*** 0.127*** 0.127*** 0.127*** 0.127*> ** (0.0281) (0.0278) (0.0297) (0.0298) (0.0298) (0.0298) > iq 0.00328** 0.0139* 0.0140* 0.0141* 0.0141*> (0.00113) (0.00604) (0.00607) (0.00604) (0.00604) > _cons 4.104*** 3.895*** 3.218*** 3.215*** 3.207*** 3.207*> ** (0.0877) (0.116) (0.398) (0.400) (0.398) (0.398) > > N 758 758 758 758 758 758 > R-sq 0.352 0.360 0.278 0.277 0.275 0.275 > > Standard errors in parentheses* p<0.05, ** p<0.01, *** p<0.001

¶þֵѡÔñÄ£ÐÍ

ÀëɢѡÔñÄ£ÐÍ¡¢¶¨ÐÔ·´Ó¦Ä£ÐÍ»ò±»½âÊͱäÁ¿È¡·Ç¸ºÕûÊýʱ£¬¶¼²»ÊÊÒËʹÓÃOLS»Ø¹é¡£ 1¡¢ ¶þֵѡÔñÄ£ÐÍ£ºÖ»ÓÐÁ½ÖÖÑ¡Ôñ£¬ÊÇ·ñ¡£

Probit y x1 x2 x3,r (probitÄ£ÐÍ)

Logit y x1 x2 x3,or vce£¨cluster clustvar£© £¨logitÄ£ÐÍ£©

ÆäÖУ¬r´ú±íʹÓÃÎȽ¡±ê×¼Îó£¬orÏÔʾ¼¸Âʱȶø²»ÊÇϵÊý£¬vce±íʾʹÓÃÒÔclustvarΪ¾ÛÀà±äÁ¿µÄ¾ÛÀàÎȽ¡±ê×¼Îó¡£

Stata¾ÙÀý£ºÃÀ¹ú¸¾Å®¾ÍÒµÓë·ñµÄ¶þֵѡÔñÄ£ÐÍ¡£

È»ºóʹÓÃlogit½øÐйÀ¼Æ£º

½á¹ûÏÔʾËùÓÐϵÊýµÄÁªºÏÏÔÖøÐԺܸߣ¬¼ÌÐøÊ¹ÓÃÎȽ¡±ê×¼Îó½øÐÐlogit»Ø¹é£º

¶Ô±ÈÒÔÉÏÁ½¸ö±í¸ñÏÔʾ±ê×¼ÎóÏà²î²»´ó£¬Òò´Ë²»Óõ£ÐÄÄ£ÐÍÉ趨ÎÊÌâ¡£ ¶þֵѡÔñÄ£ÐÍÖеÄÒì·½²îÎÊÌ⣺hetprob y x1 x2 x3,het(varlist)£¬Èç¹û½ÓÊÜÔ­¼ÙÉèÔòΪͬ·½²î¡£ ´ËÍ⣬¶þֵѡÔñÄ£ÐÍÖÐÒ»°ã¶¼Ã»ÓÐÈŶ¯ÏîµÄ´æÔÚ¡£

¶þֵѡÔñÄ£ÐÍÖеÄÒì·½²îÎÊÌâ¿ÉÒÔ½øÐÐËÆÈ»±È¼ìÑ飨LR£©£ºhetprob y x1 x2 x3,het(varlist)(ÕâÊÇÔÚÒì·½²îÇé¿öϽøÐÐProbit¹À¼ÆµÄstataÃüÁhet£¨varlist£©Öƶ¨¶ÔÈŶ¯Ïî·½²îÓÐÓ°ÏìµÄËù

ÓбäÁ¿£¬Èçhet£¨age married children£©)£¬LR¼ìÑéÔ­¼ÙÉèΪͬ·½²î¡£

¶àֵѡÔñÄ£ÐÍ

¸öÌåÃæÁÙµÄÑ¡ÔñÓÐʱÊǶàÖµµÄ£¬Òò´Ë¿ÉÄÜÐèҪʹÓõ½¶àÏîprobit»ò¶àÏîlogit£¬»òÕßÔÚÓÐijÏîÌõ¼þʱÐèÒªÓõ½Ìõ¼þlogit£¬»¹ÓÐÔÚ²»Ëæ·½°¸¶ø±äµÄ¶àÏîlogitÄ£ÐͺͽâÊͱäÁ¿Ëæ·½°¸¶ø±äµÄÌõ¼þlogitÄ£ÐÍ»ìºÏµÄlogitÄ£ÐÍ¡£

¾ÙÀýÀ´Ëµ£¬Îʾíµ÷²é½«ÊÜ·ÃÕßÖ°Òµ·ÖΪÎåÀࣨOCC£©£¬½âÊͱäÁ¿ÎªÊÇ·ñ°×ÈË¡¢ÊܽÌÓýÄêÏÞ¡¢¹¤Á䣬½âÊͱäÁ¿¶¼ÒÀÀµÓÚ¸öÌå¶ø²»ÒÀÀµÓÚ·½°¸£¬Òò´ËʹÓöàÏîlogit»ò¶àÏîprobit»Ø¹é£º

½øÐжàÏîlogit»Ø¹é£º

ÉÏÊö½á¹û˵Ã÷°×È˸ü²»¿ÉÄÜÑ¡Ôñ·þÎñÒµ»ò¹¤½³£»ÊÇ·ñ°×È˶ÔÑ¡ÔñÀ¶Áì»ò°×ÁìûÏÔÖøÓ°Ïì¡£¡£¡£

ÅÅÐòÓë¼ÆÊýÄ£ÐÍ

1¡¢ ²´Ëɻع飺±»½âÊͱäÁ¿Ö»ÄÜÈ¡·Ç¸ºÕûÊý£¬¼´0,1,2¡­.£¬Õâʱ³£Óò´Ëɻع顣

Poisson y x1 x2 x3,r irr

Poisson y x1 x2 x3,r exposure(x1) Poisson y x1 x2 x3,r offset(x1)

ÆäÖУ¬rΪÎȽ¡±ê×¼Îó£¬irrΪÏÔʾ·¢ÉúÂʱȣ¬exposure±íʾ°Ñinx1×÷Ϊ½âÊͱäÁ¿²¢Ê¹ÆäϵÊýΪ1£¬offset±íʾ½«x1×÷Ϊ½âÊͱäÁ¿²¢Ê¹ÆäϵÊýΪ1.

2¡¢ ¸º¶þÏî»Ø¹é£º²´ËɻعéµÄ¾ÖÏÞÊDz´ËÉ·Ö²¼µÄÆÚÍûÓë·½²îÒ»¶¨ÏàµÈ£¬µ«Èç¹û±»½âÊͱäÁ¿µÄ

·½²îÃ÷ÏÔ´óÓÚÆÚÍû£¬¼´´æÔÚ¹ý¶È·ÖÉ¢£¬Õâʱºò¿ÉÒÔʹÓøº¶þÏî»Ø¹é¡£ Nbreg y x1 x2 x3,r exposure(x1)

Nbreg y x1 x2 x3,r dispersion(constant) offset(x1) ÆäÖÐdispersion£¨constant£©±íʾʹÓÃNB1Ä£ÐÍ¡£

3¡¢ ÁãÅòÕͲ´ËɻعéÓ븺¶þÏî»Ø¹é£ºÈç¼ÆÊýÊý¾ÝÖаüº¬´óÁ¿0Öµ£¬Ôò¿ÉÒÔʹÓÃÁãÅòÕͲ´ËÉ»Ø

¹é»òÁãÅòÕ͸º¶þÏî»Ø¹é¡£Èç¹ûvuongͳ¼ÆÁ¿ºÜ´óΪÕýÊý£¬ÔòÓ¦¸ÃʹÓÃÁãÅòÕͲ´Ëɻع飬Èç¹ûͳ¼ÆÁ¿ºÜСΪ¸ºÊý£¬ÔòʹÓÃÁãÅòÕ͸º¶þÏî»Ø¹é¡£ Zip y x1 x2 x3,inflate(varlist) vuong(ÁãÅòÕͲ´Ëɻعé)

Zinb y x1 x2 x3,inflate(varlist) vuong(ÁãÅòÕ͸º¶þÏî»Ø¹é)£¬ÆäÖÐinflate(varlist)²»¿ÉȱÉÙÁгöËùÓбäÁ¿¡£

Èç¹ûÑо¿ÕßÖ»¹Ø×¢²ÎÊýµÄ¹À¼ÆÖµ£¬Ôò²´Ëɻع顣 Stata¾ÙÀý£º

±»½âÊͱäÁ¿narr86£¨1986Äê±»´þ²¶µÄ´ÎÊý£©£¬±»½âÊͱäÁ¿Îª¼ÆÊýÊý¾Ý£¬¾¡¹ÜÈç´Ë£¬»¹ÊÇʹÓÃOLS»Ø¹é½øÐй۲죺

RµÄƽ·½Îª0.07£¬µ«´ó¶àÊý½âÊͱäÁ¿¶¼ÏÔÖø£¬ÏÂÃæ½øÐв´Ëɻع飬²¢Ê¹ÓÃÎȽ¡±ê×¼Îó£º

£¨nolog£©±íʾ²»ÏÔʾµü´ú¼Ç¼¡£ÉÏÁ©Í¼¿ÉÒÔ¿´³öËäÈ»OLSºÍ²´ËɵÄϵÊýÏà²îºÜ´ó£¬µ«Á½Õß²¢²»¾ßÓпɱÈÐÔ£¬Îª·½±ã±È½Ï£¬¼ÆËã²´ËɻعéµÄƽ¾ù±ß¼ÊЧӦ£º

¿ÉÒÔ¿´³ö£¬²´ËÉÄ£ÐÍµÄÆ½¾ù±ß¼ÊЧӦÓëOLSµÄ»Ø¹éϵÊýºÜ½Ó½ü£¬Îª±ãÓÚ½âÊÍϵÊý£¬ÏÂÃæ¼ÆËã·¢ÉúÂʱȣº

¿ÉÒÔ¿´³öºÚÈ˱»´þ²¶´ÎÊý±È°×È˶à93.6%¡£´ËÍâʹÓò´ËɻعéµÄǰÌáÖ®Ò»ÊDZ»½âÊͱäÁ¿µÄÆÚÍûÓë·½²îÏàµÈ£¬Òò´Ë¿¼²ì±»½âÊͱäÁ¿µÄͳ¼ÆÌØÕ÷£º

½á¹ûÏÔʾÑù±¾·½²î¼¸ºõÊÇÑù±¾¾ùÖµµÄÁ½±¶£¬Îª·ÅËɴ˼ٶ¨½øÐиº¶þÏî»Ø¹é£¨NB2£©£º

ÉÏͼÖÐalphaµÄÖÃÐÅÇø¼äΪ0.7-1.24£¬Òò´Ë¿ÉÔÚ5%µÄÏÔÖøÐÔˮƽϾܾø¹ý¶È·ÖÉ¢²ÎÊý

alpha=0µÄÔ­¼ÙÉ裬ҲÒò´ËӦʹÓøº¶þÏî»Ø¹é¡£

¶ÌÃæ°å

Ãæ°åÊý¾ÝÖ¸µÄÊÇÒ»¶Îʱ¼äÄÚ¸ú×Ùͬһ×é¸öÌåÊý¾Ý£¬Ëü¼ÈÓÐºá½ØÃæµÄά¶ÈÓÖÓÐʱ¼äά¶È¡£ÆäÖУ¬Èç¹ûÿ¸öʱÆÚÔÚÑù±¾ÖеĸöÌåÍêȫһÑù£¬Ôò³ÆÎªÆ½ºâÃæ°åÊý¾Ý£¬·´Ö®Îª·ÇƽºâÃæ°åÊý¾Ý¡£ ¹Ì¶¨Ð§Ó¦»¹ÊÇËæ»úЧӦ£ºµ±²»´æÔÚÒì·½²îµÄʱºò£¬Ê¹ÓÃhausman¼ìÑ飬Èç¹û¼ÙÉè³ÉÁ¢£¬Ôò

ʹÓÃËæ»úЧӦ£¬Èç¹û¾Ü¾ø¼ÙÉ裬ÔòʹÓù̶¨Ð§Ó¦¡£

¶øµ±´æÔÚÒì·½²îʱºò£¬Ê¹Óø¨Öú»Ø¹éÈ»ºó¾ÛÀàÎȽ¡±ê×¼ÎóÀ´¼ìÑ飬

Èç¹û½ÓÊܼÙÉ裬ÔòʹÓÃËæ»úЧӦģÐÍ¡£

¶ÌÃæ°åµÄstataÃüÁʵÀý£º

Xtset panelvar timevar£¨xt˵Ã÷Êý¾ÝÎªÃæ°åÊý¾Ý£¬panelvarȡֵ±ØÐëΪÕûÊýÇÒ²»Öظ´£¬Ï൱ÓÚ

½øÐбàºÅ£¬timevarΪʱ¼ä±äÁ¿£¬¼ÙÈçpanelvarΪ×Ö´®·û£¬Èç¹ú¼Ò£¬ÔòʹÓÃencode country£¬gen£¨cntry£©£©

Xtdes ÏÔÊ¾Ãæ°åµÄ½á¹¹£¬ÊÇ·ñΪƽºâÃæ°å Xtsum ÏÔʾ×éÄÚ£¬×é¼äÓëÕûÌåµÄͳ¼ÆÖ¸±ê

Xttab varname ÏÔʾ×éÄÚ£¬×é¼äÓëÕûÌåµÄ·Ö²¼ÆµÂÊ£¬tabÖ¸µÄÊÇtabulate ½»Í¨ËÀÍöÂÊ£ºÊ×ÏÈÉ趨stateÓëyearÎªÃæ°å±äÁ¿¼°Ê±¼ä±äÁ¿¡£

ÉÏͼÏÔʾÕâÊÇÒ»¸öƽºâµÄÃæ°åÊý¾Ý£¨Ã¿¸öʱÆÚÔÚÑù±¾ÖеĸöÌåÍêȫһÑù)£¬È»ºóÏÔʾÊý¾Ý¼¯

µÄ½á¹¹:

n=48£¬T=7£¬n´ó¶øTС£¬ËµÃ÷ÕâÊÇÒ»¸ö¶ÌÃæ°å£¬È»ºó×÷Ϊ²ÎÕÕϵ£¬Ê×ÏȽøÐлìºÏ»Ø¹é£º reg y x1 x2 x3£¬vce£¨cluster id£©ÆäÖÐidÓÃÀ´È·¶¨Ã¿¸ö¸öÌåµÄ±äÁ¿£¬vce£¨cluster state£©±íʾ

ʹÓÃÒÔstateΪ¾ÛÀà±äÁ¿µÄ¾ÛÀàÎȽ¡±ê×¼Îó

ÓÉÓÚÿ¸öÖݵÄÇé¿ö²»Ò»Ñù£¬¿ÉÄÜ´æÔÚ²»ËæÊ±¼ä±ä»¯µÄÒÅ©±äÁ¿£¬¹Ê¿¼ÂÇʹÓù̶¨Ð§Ó¦£º Xtreg y x1 x2 x3£¬fe r

LSDV·¨µÄstataÃüÁîΪ£ºreg y x1 x2 x3 i.id£¬r

ÆäÖÐrΪʹÓþÛÀàÎȽ¡±ê×¼Îó£¬vce£¨cluster id£©Ò²ÄÜ´ïµ½ÕâÖÖЧ¹û£¬id±íʾÓÃÀ´È·¶¨¸öÌåµÄ

±äÁ¿£¬i.id±íʾ¸ù¾Ý±äÁ¿id¶øÉú³ÉµÄÐéÄâ±äÁ¿¡£

Ê×ÏÈʹÓÃ×éÄÚ¹À¼ÆÁ¿£º

ÔÚÑ¡ÔñËæ»ú»¹Êǹ̶¨Ê±£ºÊ¹ÓÃhausman¼ìÑ飺xtreg y x1 x2 x3£¬fe£¨¹Ì¶¨Ð§Ó¦¹À¼Æ£©

Estimates store fe£¨´æÖü£©

Xtreg y x1 x2 x3£¬re£¨Ëæ»úЧӦ¹À¼Æ£© Estimates store re£¨´æ´¢£© Hausman fe re£¬constant sigmamore£¨ºÀ˹Âü¼ìÑ飩

³¤Ãæ°åÓë¶¯Ì¬Ãæ°å

ÔÚ³¤Ãæ°åÖУ¬T¿ÉÄÜ»á±È½Ï´ó£¬Òò´Ë¿ÉÄÜ´æÔÚ×é¼äÒì·½²î£¬×éÄÚ×ÔÏà¹Ø»ò×é¼äͬÆÚÏà¹ØµÄÎÊÌ⣬Ö÷ÒªÓÐÁ½ÖÖ´¦Àí·½Ê½£º1¡¢Ê¹ÓÃOLS¼´LSDVÀ´¹À¼ÆÏµÊý£¬Ö»¶Ô±ê×¼Îó²î½øÐнÃÕý£¨¼´Ãæ°å½ÃÕýÎó²î£©£»3¡¢¶ÔÒì·½²î»ò×ÔÏà¹ØµÄ¾ßÌåÐÎʽ½øÐмÙÉ裬ȻºóʹÓÿÉÐйãÒå×îС¶þ³Ë·¨FGLS½øÐйÀ¼Æ¡£

1¡¢ ½ÃÕý±ê×¼Îó²î

¼´Ê¹ÈŶ¯Ïî´æÔÚ×é¼äÒì·½²î»ò×é¼äͬÆÚÏà¹ØµÈ£¬LSDVÒ²ÒÀÈ»ÓÐЧ£¬´Ëʱ£¬Ö»ÒªÊ¹ÓÃ×é¼äÒì·½²î¡¢×é¼äͬÆÚ·½²îÎȽ¡µÄ±ê×¼Îó²î¼´¿É£¬¼´Ãæ°åУÕý±ê×¼Îó²îPCSE£º Xtpvse y x1 x2 x3,hetonly£¬ÆäÖÐhetonly±íʾ´æÔÚ×é¼äÒì·½²î£¬µ«²»´æÔÚ×é¼äͬÆÚÏà¹Ø£»

¾ÙÀý£ºincΪ±»½âÊͱäÁ¿£¬ÓÉÓÚn=10£¬T=30£¬Òò´ËÊÇÒ»¸ö³¤Ãæ°å¡£ÎªÁË¿¼ÂÇʱ¼äЧӦ£¬Éú³Éʱ¼äÇ÷ÊÆ±äÁ¿t£¬È»ºóÓÃLSDV·¨¹À¼ÆË«Ïò¹Ì¶¨Ð§Ó¦Ä£ÐÍ£¨×÷Ϊ¶Ô±ÈÏȲ»¿¼ÂÇÒì·½²îµÈ£©

ÏÂͼ¿ÉÒÔ¿´³öÓÐЩÖÝÐéÄâ±äÁ¿ÏÔÖø£¬¼´´æÔڹ̶¨Ð§Ó¦£¬¶øÊ±¼äЧӦÔò²»Ì«ÏÔÖø£¬pֵΪ0.19.È»ºóϱíδ¿¼ÂÇ×é¼äÒì·½²îµÈ£¬Òò´ËʹÓÃÃæ°åУÕý±ê×¼Îó½øÐйÀ¼Æ£¨ÏÂÏÂͼ£©

ÃüÁîxtpcseÓëÃüÁîregµÄ¹À¼ÆÏµÊýÍêȫһÑù£¬Ö»ÊDZê×¼Îó²»Í¬¡£ 2¡¢ ½ö½â¾ö×éÄÚ×ÔÏà¹ØµÄFGLS£ºxtpcse y x1 x2£¬corr£¨ar1£©¡£ÎÞÂÛÊÇʹÓÃprais-winsten

»¹ÊÇOLS·½·¨¶¼ÔÚ×é¼äÒì·½²îÓë×é¼äͬÆÚÏà¹ØµÄÇé¿öϳÉÁ¢¡£

¼ÌÐøÊ¹ÓÃÒÔÉÏÊý¾Ý£¬¿¼ÂÇ×éÄÚ×ÔÏà¹ØµÄÇéÐΣ¬µ«ÒªÇó¸÷×éµÄ×ԻعéϵÊýÏàͬ 3¡¢ ×é¼äÒì·½²îµÄ¼ìÑ飺Èç¹û¾Ü¾ø¼ÙÉ裬Ôò´æÔÚ×é¼äÒì·½²î¡£

Ssc install xttest3£¨ÏÂÔØ°²×°ÃüÁ Quietly xtreg lnc lnp i.state t£¬r fe xttest3

Quietly xtgls lnc lnp i.state t Xttest3

4¡¢ ×éÄÚ×ÔÏà¹Ø¼ìÑ飺Èç¹û¾Ü¾ø¼ÙÉ裬Ôò´æÔÚ×éÄÚ×ÔÏà¹Ø

Net install st0039

Xtserial y x1 x2 x3,output

5¡¢ ×é¼äͬÆÚÏà¹ØµÄ¼ìÑ飺Èç¹û¾Ü¾ø¼ÙÉ裬¼´´æÔÚ×é¼äͬÆÚÏà¹Ø¡£

Ssc install xtest2

Quietly xreg inc inp inpmin iny t,fe Xttest2

·ÇÏßÐÔÃæ°å

¶ÔÓÚÃæ°åÊý¾Ý£¬Èç¹û±»½âÊͱäÁ¿ÎªÐéÄâ±äÁ¿¡¢¼ÆÊý±äÁ¿¡¢ÊÜÏÞ±äÁ¿µÈ£¬ÔòΪ·ÇÏßÐÔÃæ°å¡£ 1¡¢ Èç¹û±»½âÊͱäÁ¿ÎªÐéÄâ±äÁ¿£¬Ôò³ÆÎªÃæ°å¶þֵѡÔñÄ£ÐÍ¡£Ò»°ã²ÉÓûìºÏ¡¢¹Ì¶¨»òËæ»úЧ

ӦģÐÍ¡£

»ìºÏ»Ø¹é£ºÈç¹û²»´æÔÚ¸öÌåЧӦ£¬ÔòʹÓûìºÏ»Ø¹é Probit y x1 x2 x3,vce(cluster id) »ìºÏprobit»Ø¹é

Logit y x1 x2 x3,vce(cluster id) »ìºÏlogit»Ø¹é ÆäÖÐIdΪȷ¶¨Ãæ°åµ¥Î»µÄ±äÁ¿ Ëæ¼´Ð§Ó¦Ä£ÐÍ£º Xtprobit x1 x2 x3, Xtlogit y x1 x2 x3£¬ÔÙ´ÎÊä³ö½á¹ûÖУ¬°üº¬Á˶ÔÔ­¼ÙÉèµÄLR¼ìÑé½á¹û£¬Èç¾Ü¾øÔòʹÓÃËæ»ú£¬

½ÓÊÜÔòʹÓûìºÏ

¹Ì¶¨Ð§Ó¦Ä£ÐÍ£ºxtlogit y x1 x2 x3,fe

StataʵÀý£º±»½âÊͱäÁ¿ÎªÊÇ·ñÆðÒåuprising£¬ÓÉÓÚÃæ°åprobitÎ޹̶¨Ð§Ó¦Ä£ÐÍ£¬Òò´Ëʹ

ÓÃÃæ°ålogitÄ£ÐÍ¡£

Ê×ÏȽøÐй̶¨Ð§Ó¦Ãæ°ålogit¹À¼Æ£º

ÈçÏÂͼËùʾ£¬µÚ¶þÐÐÓÐÒ»¸ö³¯´úδ·¢ÉúÆóÒµ£¬Òò´ËÔÚ¹À¼Æ¹Ì¶¨Ð§Ó¦Ê±Ó¦±»È¥µô¡£

È»ºó½øÐлìºÏ»Ø¹élogitÄ£ÐÍ£¬Îª±£³ÖÓë¹Ì¶¨Ð§Ó¦Ñù±¾Ò»Ñù£¬ÔÚ»ìºÏ»Ø¹éÖÐҲȥµôÁËdyn=2

µÄ³¯´ú£º

ΪÁËÔڹ̶¨ºÍ»ìºÏ½øÐÐÑ¡Ôñ£¬Ê¹ÓúÀ˹Âü¼ìÑ飬µ«ºÀ˹Âü²»ÔÊÐíÔÚ»ìºÏ»Ø¹éʹÓÃÑ¡ÔñÏî

vce£¨cluester dyn£©£¬Òò´ËÖØÐ½øÐлìºÏ»Ø¹é£º

quietly logit uprising age pop temp sfamine sfamine1 sfamine2 sfamine3 relief relief1 relief2

relief3 if dyn~=2, nolog£¨²»ÏÔʾ½á¹û£©

½á¹û¾Ü¾ø¼ÙÉ裬Òò´ËʹÓù̶¨Ð§Ó¦Ä£ÐÍ¡££¨pooled±íʾ½«»Ø¹é·ÅÔÚÒ»Æð×ö£©

È»ºóÏÂÃæ½øÐÐËæ»úЧӦlogit¹À¼Æ

´ÓÉϱí×îºóÒ»ÐеÄÖµLR¼ìÑé¾Ü¾ø¼ÙÉ裬Òò´ËӦʹÓÃÃæ°åËæ»úЧӦģÐÍ£¬²»Ò˽øÐлìºÏ»Ø

¹é¡£

×îºó£¬ÎªÁËÔڹ̶¨Ð§Ó¦ÓëËæ»úЧӦģÐÍÖ®¼ä½øÐÐÑ¡Ôñ£¬ÔٴνøÐкÀ˹Âü¼ìÑ飺

½á¹û¾Ü¾ø¼ÙÉ裬Òò´ËӦʹÓù̶¨Ð§Ó¦Ä£ÐÍ¡£

2¡¢ Ãæ°å²´Ëɻع飺±»½âÊͱäÁ¿Îª¼ÆÊý±äÁ¿Ê±£¬·Ç¸ºÕûÊý¡£

ÆäÖУ¬»ìºÏ²´Ëɻع飺poisson y x1 x2 x3,vce(cluster id)irr£¨irrΪ»Ø±¨·¢ÉúÂʱȣ© Ãæ°å²´Ëɻع飺xtpoisson y x1 x2 x3,fe normal irr(×ÔÓÉÑ¡ÔñfeºÍre)

Ãæ°å¸º¶þÏî»Ø¹é£º²´ËɻعéµÄȱÏÝÊÇÈç¹û·½²îÓëÆÚÍûÖ®¼ä²î¾à¹ý´ó¼´´æÔÚ¹ý¶È·ÖÉ¢£¬¼È¿ÉÒÔ²ÉÓøº¶þÏî»Ø¹é¡£

»ìºÏ¸º¶þÏî»Ø¹é£ºnbreg y x1 x2 x3,vce(cluster id)

Ãæ°å¸º¶þÏî»Ø¹é£ºxtnbreg y x1 x2 x3,fe irr£¨×ÔÓÉÑ¡ÔñfeºÍre£© StataʵÀý£º±»½âÊͱäÁ¿mduΪ¸öÌå¿´Ò½ÉúµÄ´ÎÊý¡£

Ãæ°å±äÁ¿Îªid£¬Ê±¼ä¿ç¶ÈΪ5Ä꣬Ϊ·ÇƽºâÃæ°å¡£ È»ºó½øÐлìºÏ²´Ëɻع飬²¢Ê¹ÓþÛÀàÎȽ¡±ê×¼Îó

È»ºó½øÐÐËæ»úЧӦµÄÃæ°å²´Ëɻع飬

. xtpoisson mdu lcoins ndisease female age lfam child,reFitting Poisson model:Iteration 0: log likelihood = -62580.248 Iteration 1: log likelihood = -62579.401 Iteration 2: log likelihood = -62579.401 Fitting full model:Iteration 0: log likelihood = -43248.161 Iteration 1: log likelihood = -43240.57 Iteration 2: log likelihood = -43240.556 Iteration 3: log likelihood = -43240.556 Random-effects Poisson regression Number of obs = 20186Group variable: id Number of groups = 5908Random effects u_i ~ Gamma Obs per group: min = 1 avg = 3.4 max = 5 Wald chi2(6) = 637.49Log likelihood = -43240.556 Prob > chi2 = 0.0000 mdu Coef. Std. Err. z P>|z| [95% Conf. Interval] lcoins -.0878258 .0068682 -12.79 0.000 -.1012873 -.0743642 ndisease .0387629 .0022046 17.58 0.000 .034442 .0430839 female .1667192 .0286298 5.82 0.000 .1106058 .2228325 age .0019159 .0011134 1.72 0.085 -.0002663 .0040982 lfam -.1351786 .0260022 -5.20 0.000 -.186142 -.0842152 child .1082678 .0341477 3.17 0.002 .0413396 .1751961 _cons .7574177 .0618346 12.25 0.000 .6362241 .8786112 /lnalpha .0251256 .0209586 -.0159526 .0662038 alpha 1.025444 .0214919 .984174 1.068444 Likelihood-ratio test of alpha=0: chibar2(01) = 3.9e+04 Prob>=chibar2 = 0.000ÉÏͼ×îºóLR¼ìÑé¾Ü¾øÔ­¼ÙÉ裬Ôò¾Ü¾ø»ìºÏ²´ËÉÄ£ÐÍ£¬ÈÏΪӦʹÓÃËæ»úЧӦµÄÃæ°å²´ËÉÄ£ÐÍ¡£

È»ºóÔÙ½øÐй̶¨Ð§Ó¦µÄÃæ°å²´Ëɻع飺

ÉÏͼÏÔʾÓÐ265×éÊý¾ÝÓÉÓÚ½öÓÐÒ»ÆÚ¹Û²âÖµ¶ø±»È¥µô£¬ÁíÓÐ666×éÊý¾ÝÓÉÓÚȡֵȫΪ0Ò²±»È¥µô£¬´ËÍâ¹Ì¶¨Ð§Ó¦Ä£ÐÍÎÞ·¨Ê¶±ð²»ËæÊ±¼ä±ä»¯µÄ±äÁ¿ÏµÊý£¨lcoins£¬ndisease£¬female£©¹ÊÕâЩ±äÁ¿Ò²±»È¥µô£¬¿ÉÒÔ¿´³ö£¬¾ÛÀàÎȽ¡±ê×¼Îó´óÔ¼ÊÇÆÕͨ±ê×¼ÎóµÄ2±¶£¬µ¼ÖÂËùÓбäÁ¿ÏµÊý¾ù²»ÏÔÖø¡£

È»ºó³õ²½¿¼²ìÊÇ·ñ´æÔÚ¹ýÁ¿·ÖÉ¢£º

¿ÉÒÔ¿´³ö±»½âÊͱäÁ¿mduµÄ·½²îÊÇÆ½¾ùÖµµÄÆß±¶¶à£¬¿ÉÄÜ´æÔÚ¹ý¶È·ÖÉ¢£¬Òò´Ë¸º¶þÏî»Ø¹é¿ÉÄܸüÓÐЧÂÊ¡£

Òò´Ë½øÐлìºÏ¸º¶þÏî»Ø¹é£¬²¢Ê¹ÓþÛÀàÎȽ¡±ê×¼Îó£º

×îºóÒ»ÐÐÏÔʾ¹ý¶È·ÖɢϵÊýaµÄÖÃÐÅÇø¼ä¾Ü¾øÁ˼ÙÉ裬¼´´æÔÚ¹ý¶È·ÖÉ¢£¬Ê¹Óøº¶þÏî»Ø¹é¿ÉÒÔÌá¸ßЧÂÊ¡£

½øÐÐËæ»úЧӦµÄÃæ°å¸º¶þÏî»Ø¹é£¬²¢Ê¹ÓÃ×ÔÖú±ê×¼Îó

×îºóÒ»ÐÐLR¾Ü¾øÁË»ìºÏ¸º¶þÏî»Ø¹éµÄÔ­¼ÙÉ裬ÈÏΪӦʹÓÃËæ»úЧӦµÄÃæ°å¸º¶þÏî»Ø¹é¡£ È»ºóʹÓúÀ˹Âü¼ìÑéÔڹ̶¨Ð§Ó¦ÓëËæ»úЧӦµÄ¸º¶þÏî»Ø¹éÖ®¼ä½øÐÐÑ¡Ôñ£º

ºÀ˹Âü¼ìÑé¾Ü¾øËæ»úЧӦ¸º¶þÏî»Ø¹é£¬Òò´ËʹÓù̶¨Ð§Ó¦¸º¶þÏî»Ø¹é¡£

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)