①采用低压接入模式的DGPV,建议其容量小于所接入中压配电变压器最大负荷40%。以配电变压器的容量为400kVA计,若其负载率为50%,则建议采用低压接入模式的DGPV容量小于80kVA。
②采用中压分散接入模式的DGPV,建议其容量要小于所接入中压馈线最大负荷的40%。以YJY22-3×300为例,若采用单环网接线,则建议采用中压分散接入模式的DGPV容量小于1.5MVA。
③采用专线接入模式的DGPV,建议其容量要小于所接入主变压器最大负荷的25%。其中,若考虑容载比为2.0,则容量为20MVA和31.5MVA的35kV主变所能接入的最大DGPV容量分别为2.5MVA和3.9MVA,而2.5(3.9)~10MVA的DGPV只能采用35kV专线接入更高等级的变电站中低压侧母线。
本系统采用的三相并网逆变器直接并入三相低压交流电网(AC380V,50Hz),使用独立的N线和接地线,适应的电网参数如表所示:
表7.1 电网参数表
序号 1 2 3 4 项目 配电系统模式 系统电压 额定频率 系统接地方式 内容 TN-S母线(独立的N线和PE线) AC380/220V 50Hz 中性点直接接地 并网系统接入三相400V或单相230V低压配电网,通过交流配电线路给当地负荷供电,由于分布式电源容量不超过上一级变压器供电区域内最大负荷的25%,所有光伏发电自发自用。 7.1.2 防雷及接地
为了保证本工程光伏并网发电系统安全可靠,防止因雷击、浪涌等外在因素导致系统器件的损坏等情况发生,系统的防雷接地装置必不可少。用户可根据整个系统情况合理设计交流防雷配电、接地装置及防雷措施。系统的防雷接地装置措施有多种方法,主要有以下几个方面供参考:
(1)地线是避雷、防雷的关键,在进行太阳电池方阵基础建设的同时,采用40扁钢,添加降阻剂并引出地线,引出线采用10mm2铜芯电缆,在光伏板周围
17
敷设一以水平接地体为主,垂直接地体为辅,联合构成的闭合回路的接地装置,供工作接地和保护接地之用。该接地采用方孔接地网,埋深在电池支架基础的下方,接地电阻按《交流电气装置的接地》DL/T 621 1997中的规定进行选择应不大于4Ω。接地网寿命按30年计算。接地装置符合《高压输变电设备的绝缘配合》GB311.1-1997和《电气装置安装工程施工及验收规范》中的规定。 (2)直流侧防雷措施:电池支架应保证良好的接地,光伏电池阵列连接电缆接入光伏阵列防雷汇流箱,汇流箱内已含高压防雷器保护装置,电池阵列汇流后再接入直流防雷配电柜,经过多级防雷装置可有效地避免雷击导致设备的损坏; (3)交流侧防雷措施:每台逆变器的交流输出经交流防雷配电柜接入电网(用户自备),可有效地避免雷击和电网浪涌导致设备的损坏; (4)所有的机柜要有良好的接地。
7.1.3继电保护、绝缘配合及过电压保护
本项目考虑在主线路上配置1套光纤电流纵差保护作为本线路的主保护。以带方向的电流电压保护作为后备保护,并要求具备自动重合闸。
逆变器配有相同容量的独立的交直流防雷配电柜,防止感应雷和操作过电压。在各级配电装置每组母线上安装一组避雷器以保护电气设备。
本工程各级电压电气设备的绝缘配合均以5kA雷电冲击和操作冲击残压作为绝缘配合的依据。电气设备的绝缘水平按《高压输变电设备的绝缘配合》GB311.1-1997选取。
对于大气过电压和操作过电压采用氧化锌避雷器进行保护。金属氧化物避雷器按《交流无间隙金属氧化物避雷器》GB11032-2000中的规定进行选择。
7.2 电气二次
7.2.1 电站调度管理与运行方式 本项目采用集中控制方式,在二次设备室实现对所有电气设备的遥测、遥控、遥调、遥信等功能。本项目受地方供电部门管辖,接受当地电力调度部门调度管理。
18
7.2.2 电站自动控制
光伏电站设置综合自动化系统一套,该系统包含计算机监控系统,并具有远动功能,根据调度运行的要求,本电站端采集到的各种实时数据和信息,经处理后可传送至上级调度中心,实现少人、无人值班,并能够分析打印各种报表。该项目在并网侧设置电能计量装置,通过专用电压互感器和电流互感器的二次侧连接到多功能电度表,通过专用多功能电度表计量光伏电站的发电量,同时设置电流、电压、有功、无功和功率因数等表计以监测系统运行参数。计量用专用多功能电度表具有通讯功能,能将实时数据上传至本站综合自动化系统。升压站线路侧的信号接入地区公共电网调度自动化系统。
通讯管理机布置在电子设备间网络设备屏上,采集各逆变器及公用设备的运行数据。综合自动化系统通过通讯管理机与站内各电气设备联络,采集分析各子系统上传的数据,同时实现对各子系统的远程控制。综合自动化系统将所有重要信息传送至监控后台,便于值班人员对各逆变器及光伏阵列进行监控和管理,在 LCD 上显示运行、故障类型、电能累加等参数。项目公司亦可通过该系统实现对光伏电站遥信、遥测。
7.2.3 继电保护及安全自动装置
光伏电站内主要电气设备采用微机保护,以满足信息上送。元件保护按照《继电保护和安全自动装置技术规程》(GB14285-93)配置。 开关柜上装设微机保护,配置通讯模块,以通讯方式将所有信息上传至综合自动化系统。 逆变器具备极性反接保护、短路保护、低电压穿越、孤岛效应保护、过热保护、过载保护、接地保护等,装置异常时自动脱离系统。 本工程系统保护配置最终应按照相关接入系统审批意见执行。
7.2.4 二次接线
光伏发电、汇流箱、逆变器、就地升压变压器等设备,通过计算机监控系统完成相关电气测量、操作等要求。 7.2.5 控制电源系统 (1) 直流电源
19
为了供电给控制、测量、信号、继电保护、自动装置等控制负荷和机组交流不停电电源等动力负荷提供直流电源,设置380V 直流系统。
7.2.6 电气二次设备布置
本工程二次设备较少,主要有直流配电屏、UPS 配电屏、监控系统屏,以及环境监测设备、火灾报警屏等。二次设备考虑统一布置于二次设备室内。
7.3 计量
计量关口设置原则为资产分界点。本项目系统接入侧设立计量表计。
8施工组织设计
8.1 施工条件
8.1.1 主要工程项目的施工方案 8.1.1.1 光伏组件安装
本工程使用的光伏组件单件质量在19.5kg 左右,质量较轻,起吊、安装较为方便。安装前应先按光伏组件出厂前标定的性能参数,将性能较为接近的光伏组件成串安装,以保证光伏组件尽量在最佳工作参数下运行。
10.1.1.2 光伏组件安装、起吊
光伏组件安装支架应以散件供货,先在施工现场将其组装成模块,然后逐件起吊就位安装。现场拼装时对组合模块的尺寸高度,应根据现场条件加以控制。 8.1.2 施工场地及施工生活区
本工程为光伏电站,所需的生产辅助项目少,且主要设备以整体运输安装为主,施工用地较少。施工生产用地利用生产厂房周边现有空地安排。施工生活设施依托沈北新区和沈阳工程学院的基础设施由施工单位自行解决。 8.1.3 地方材料供应情况 (1)黄砂:由本地区供应; (2)水泥:由当地水泥厂供应; (3)石料:在本地采购;
20