∑MC=0 FAy×6-FAx×10-F×5-(G1+FND) ×4=0 ∴FAx=7.5kN ∑Fx=0 FCx+F+FAx=0 ∴FCx=-17.5kN ∑Fy=0 FCy+FAy-G1-FND=0 ∴FCy=5kN 取T房房架整体: ∑Fx=0 FAx+F+FBx=0 ∴FBx=-17.5kN
4-22解:整体及部分受力如图示
取整体:∑MC=0 -FAx?l?tg45°-G?(2l+5)=0 ∴FAx=-(2+5/l)G ∑MA=0 FCx?ltg45°-G(2l+5)=0 ∴FCx=(2+5/l)G
取AE杆:∑ME=0 –FAx?l-FAy?l-G?r=0 ∴FAy=2G ∑Fx=0 FAx+FBx+G=0 ∴FBx=(1+5/l)G ∑Fy=0 FAy+FBy=0 ∴FBy=-2G
取整体:∑Fy=0 FAy+FCy-G=0 ∴FCy=-G 取轮D: ∑Fx=0 FDx-G=0 ∴FDx=G ∑Fy=0 FDy-G=0 ∴FDy=G
4-23 解:整体及部分受力如图示
取整体:∑MB=0 FCy×10-W2×9-P×4-W1×1=0 ∴FCy=48kN ∑Fy=0 FBy+FCy-W1-W2-P=0 ∴FBy=52kN
取AB段:∑MA=0 FBx×4+W1×4+P×1-FBy×5=0 ∴FBx=20kN ∑Fx=0 FBx+FAx=0 ∴FAx=-20kN ∑Fy=0 FBy+FAy-W1-P=0 ∴FAy=8kN 取整体:∑Fx=0 FBx+FCx=0 ∴FCx=-20kN
4-24 解:系统中1、2、3、4、5杆均为二力杆,整体及部分受力如图:
取整体:∑Fx=0 FAx=0
∑MA=0 -3P1-6P2-10P3+14FRB=0 ∴FRB=80kN ∑Fy=0 FAy+FRB-P1-P2-P3=0 ∴FAy=90kN
取左半部分:∑MH=0 P2×1+P1×4-FAy×7+S3×3=0 ∴S3=117kN 取节点E:∑Fx=0 S3-S1cosα=0 ∴S1=146kN ∑Fy=0 S2+S1sinα=0 ∴S2=-87.6kN
取节点F:∑Fx=0 -S3+S5cosα=0 ∴S5=146kN
∑Fy=0 S4+S5sinα=0 ∴S4=-87.6kN 4-25解:整体及部分受力如图示:
取整体:∑MA=0 FRB×4-P(1.5-R)-P(2+R)=0 ∴FRB=21kN ∑Fx=0 FAx-P=0 ∴FAx=24kN ∑Fy=0 FAy+FRB-P=0 ∴FAy=3kN
取ADB杆:∑MD=0 FBy×2-FAy×2=0 ∴FBy=3kN 取B点建立如图坐标系:
∑Fx=0 (FRB-F'By)sinθ-F'Bxcosθ=0 且有FBy=F'By,∴F'Bx18tgθ=18×2/1.5=24kN
4-26 解:整体及部分受力如图示: 取整体:∑MB=0 FAx×4+P×4.3=0 ∴FAx=-43kN ∑Fx=0 FB+FAx=0 ∴FBx=43kN
FBx=F'Bx