无锡市2020年部编人教版中考数学试题有答案精析.doc

【分析】当B在x轴上时,对角线OB长的最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果. 【解答】解:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,

根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4, ∵四边形ABCD是平行四边形, ∴OA∥BC,OA=BC, ∴∠AOD=∠CBE, 在△AOD和△CBE中, ,

∴△AOD≌△CBE(AAS), ∴OD=BE=1, ∴OB=OE+BE=5; 故答案为:5.

18.AO=8cm,BO=6cm,△AOB中,∠O=90°,如图,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了 s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.

【考点】直线与圆的位置关系.

【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4. 【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时, 此时,CF=1.5, ∵AC=2t,BD=t,

∴OC=8﹣2t,OD=6﹣t, ∵点E是OC的中点, ∴CE=OC=4﹣t,

∵∠EFC=∠O=90°,∠FCE=∠DCO ∴△EFC∽△DCO ∴=

∴EF===

由勾股定理可知:CE2=CF2+EF2, ∴(4﹣t)2=+, 解得:t=或t=, ∵0≤t≤4, ∴t=.

故答案为:

三、解答题:本大题共10小题,共84分

19.(1)|﹣5|﹣(﹣3)2﹣()0 (2)(a﹣b)2﹣a(a﹣2b)

【考点】单项式乘多项式;完全平方公式;零指数幂. 【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;

(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果. 【解答】解:(1)原式=5﹣9﹣1=﹣5; (2)a2﹣2ab+b2﹣a2+2ab=b2. 20.(1)解不等式:2x﹣3≤(x+2) (2)解方程组:.

【考点】解一元一次不等式;解二元一次方程组. 【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;

(2)用加减法消去未知数y求出x的值,再代入求出y的值即可. 【解答】解:(1)2x﹣3≤(x+2) 去分母得:4x﹣6≤x+2,

移项,合并同类项得:3x≤8, 系数化为1得:x≤; (2).

由①得:2x+y=3③, ③×2﹣②得:x=4,

把x=4代入③得:y=﹣5, 故原方程组的解为.

21.E为BC边上一点,F为BA延长线上一点,已知,如图,正方形ABCD中,且CE=AF.连接DE、DF.求证:DE=DF.

【考点】正方形的性质;全等三角形的判定与性质.

【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可. 【解答】证明:∵四边形ABCD是正方形, ∴AD=CD,∠DAB=∠C=90°, ∴∠FAD=180°﹣∠DAB=90°. 在△DCE和△DAF中, ,

∴△DCE≌△DAF(SAS), ∴DE=DF.

22.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC (1)线段BC的长等于 ;

(2)请在图中按下列要求逐一操作,并回答问题:

①以点 A 为圆心,以线段 BC 的长为半径画弧,与射线BA交于点D,使线段OD的长等于

②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.

【考点】作图—复杂作图. 【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;

(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;

②根据线段的三等分点的画法,结合OA=2AC,即可得出结论. 【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°, ∴BC==. 故答案为:.

(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°, ∴AD===BC.

∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.

依此画出图形,如图1所示.

故答案为:A;BC.

②∵OD=,OP=,OC=OA+AC=3,OA=2, ∴.

故作法如下:

连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点. 依此画出图形,如图2所示.

23.某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下: 参加社区活动次数的频数、频率分布表 活动次数x 频数 频率 0<x≤3 10 0.20 3<x≤6 a 0.24 6<x≤9 16 0.32 9<x≤12 6 0.12 12<x≤15 m b 15<x≤18 2 n

根据以上图表信息,解答下列问题: (1)表中a= 12 ,b= 0.08 ;

(2)请把频数分布直方图补充完整(画图后请标注相应的数据); (3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?

【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表. 【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;

(2)利用(1)中所求补全条形统计图即可;

(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案. 【解答】解:(1)由题意可得:a=50×0.24=12(人), ∵m=50﹣10﹣12﹣16﹣6﹣2=4, ∴b==0.08;

故答案为:12,0.08;

(2)如图所示: ;

(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),

答:该校在上学期参加社区活动超过6次的学生有648人.

24.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程) 【考点】列表法与树状图法. 【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.

【解答】解:根据题意画出树状图如下:

一共有4种情况,确保两局胜的有4种, 所以,P=.

25.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.

(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式; (2)分别求该公司3月,4月的利润;

(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)

【考点】一次函数的应用.

联系客服:779662525#qq.com(#替换为@)