¹Ê´ð°¸Îª£º
£¬¹«²îd£¾0£¬
17.´ð°¸£º½â£º£¨1£©µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪ
ËùÒÔ£ºS1=a1£¬S4=4a1+6d£¬S16=16a1+120d£¬ ÓÉÓÚS1£®¡¢S4£®¡¢S16³ÉµÈ±ÈÊýÁУ¬ ËùÒÔ£º½âµÃ£ºd=2a1 ÓÉÓÚ½âµÃ£ºËùÒÔ£ºd=2£® Ôò£ºan=2n-1£® ÓÖÕûÀíµÃ£º£¨2£©ÓÉÓÚ£ºËùÒÔ£ºËùÒÔ£º µ±x=1ʱ£¬
£¬
=
µ±x¡Ù1ʱ£¬
£¬
=
£® £¬
£¬ £¨x£¾0£©£®
£¬
£¬
£¬
£®
£¬
½âÎö£º£¨1£©Ö±½ÓÀûÓÃÊýÁеĵÝÍÆ¹ØÏµÊ½Çó³öÊýÁеÄͨÏʽ£¬ £¨2£©ÀûÓ÷ÖÀàÌÖÂÛ˼ÏëºÍÁÑÏîÏàÏû·¨Çó³öÊýÁеĺͣ®
±¾Ì⿼²éµÄ֪ʶҪµã£ºÊýÁеÄͨÏʽµÄÇ󷨼°Ó¦Óã¬ÁÑÏîÏàÏû·¨ÔÚÊýÁÐÇóºÍÖеÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã¬Ö÷Òª¿¼²ìѧÉúµÄÔËËãÄÜÁ¦ºÍת»»ÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮ 18.´ð°¸£º½â£º£¨¢ñ£©¡ßPC¡ÍÆ½ÃæABCD£¬AC?Æ½ÃæABCD£¬¡àAC¡ÍPC£® ¡ßAB=4£¬AD=CD=2£¬¡àAC=BC=2£® ¡àAC2+BC2=AB2£¬¡àAC¡ÍBC£®
ÓÖBC¡ÉPC=C£¬¡àAC¡ÍÆ½ÃæPBC£® ¡ßAC?Æ½ÃæEAC£¬
¡àÆ½ÃæEAC¡ÍÆ½ÃæPBC£®
µÚ13Ò³£¬¹²18Ò³
£¨¢ò£©Èçͼ£¬ÒÔµãCΪԵ㣬£¬£¬·Ö±ðΪxÖá¡¢yÖá¡¢zÖáÕý·½Ïò£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÔòC£¨0£¬0£¬0£©£¬A£¨2£¬2£¬0£©£¬B£¨2£¬-2£¬0£©£®
ÉèP£¨0£¬0£¬2a£©£¨a£¾0£©£¬ÔòE£¨1£¬-1£¬a£©£¬=£¨2£¬2£¬0£©£¬=£¨0£¬0£¬2a£©£¬=£¨1£¬-1£¬a£©£®
È¡=£¨1£¬-1£¬0£©£¬Ôò?=?=0£¬ÎªÃæPACµÄ·¨ÏòÁ¿£® Éè=£¨x£¬y£¬z£©ÎªÃæEACµÄ·¨ÏòÁ¿£¬Ôò?=?=0£¬ ¼´
£¬È¡x=a£¬y=-a£¬z=-2£¬Ôò=£¨a£¬-a£¬-2£©£¬
=
=£¬Ôòa=2£®
ÒÀÌâÒ⣬|cos£¼£¬£¾|=
ÓÚÊÇn=£¨2£¬-2£¬-2£©£¬=£¨2£¬2£¬-4£©£® ÉèÖ±ÏßPAÓëÆ½ÃæEACËù³É½ÇΪ¦È£¬ Ôòsin¦È=|cos£¼£¬£¾|=
=£¬
¼´Ö±ÏßPAÓëÆ½ÃæEACËù³É½ÇµÄÕýÏÒֵΪ£®
½âÎö£º£¨¢ñ£©Ö¤Ã÷AC¡ÍPC£®AC¡ÍBC£®Í¨¹ýÖ±ÏßÓëÆ½Ãæ´¹Ö±µÄÅж¨¶¨ÀíÒÔ¼°Æ½ÃæÓëÆ½Ãæ´¹Ö±µÄÅж¨¶¨ÀíÖ¤Ã÷Æ½ÃæEAC¡ÍÆ½ÃæPBC£®
£¨¢ò£©Èçͼ£¬ÒÔµãCΪԵ㣬£¬£¬·Ö±ðΪxÖá¡¢yÖá¡¢zÖáÕý·½Ïò£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó³öÏà¹ØµãµÄ×ø±êÒÔ¼°ÃæPACµÄ·¨ÏòÁ¿£®ÃæEACµÄ·¨ÏòÁ¿£¬Í¨¹ý¶þÃæ½ÇP-AC-EµÄÓàÏÒֵΪ£¬Çó³öÖ±ÏßPAµÄÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýÇó½âÖ±ÏßPAÓëÆ½ÃæEACËù³É½ÇµÄÕýÏÒÖµ¼´¿É£®
±¾Ì⿼²éÆ½ÃæÓëÆ½Ãæ´¹Ö±µÄÅж¨¶¨ÀíÒÔ¼°¶þÃæ½ÇµÃµ½Æ½Ãæ½Ç£¬Ö±ÏßÓëÆ½ÃæËù³É½ÇµÄÇ󷨣¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®
¼°¶¨µã£¬µãAÊÇÔ²MÉϵ͝µã£¬µãB19.´ð°¸£º½â£º£¨1£©ÒÑÖªÔ²ÔÚNAÉÏ£¬µãGÔÚMAÉÏ£¬ÇÒÂú×ã
£¬
BΪANµÄÖе㣬ÇÒGB¡ÍAN£¬µÃGBÊÇÏß¶ÎANµÄÖд¹Ïߣ¬
¡à|AG|=|GN|£¬ÓÖ|GM|+|GN|=|GM|+|GA|=|AM|=8£¾4=|MN| ¡àµãGµÄ¹ì¼£ÊÇÒÔM£¬NΪ½¹µãµÄÍÖÔ²£» ÉèÍÖˆA·½³ÌΪ+=1£¨a£¾b£¾0£© Ôòa=4£¬c=2
£¬¡àb=
=2
ËùÒÔÇúÏßCµÄ·½³ÌΪ£º+=1 £¨2£©Ö±Ïß1£ºy=kx+m£¨k¡ÙÊ¿£©
µÚ14Ò³£¬¹²18Ò³
ÔòÓÉÌâÒây=kx+mÓë+=1ÁªÁ¢·½³Ì×飻
ÏûÈ¥y£¬¿ÉµÃ£º
£¨1+4k2£©x2+8kmx+4m2-16=0£»
ÒòΪֱÏßl×ÜÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔ¡÷=64k2m2-4£¨1+4k2£©£¨4m2-16£©=0£¬¼´m2=16k2+4£®¢Ù ÓÖÓÉ£ºy=kx+mÓëx-2y=0 ¿ÉµÃP£¨2
£¬
£©£» £¬
£©
ºÍ|PQ|=|£»¢Ú
|xP-xQ|£¬
ͬÀí¿ÉµÃQ£¨-2
ÓÉÔµãOµ½Ö±ÏßPQµÄ¾àÀëΪd=S¡÷OPQ=d|PQ|=
¡Á
|xP-xQ|=|
½«¢Ù´úÈë¢Ú¿ÉµÃ£º S¡÷OPQ=d|PQ|=
¡Á
|xP-xQ|=||=8£¨
|=8|£©=8£¨1+
|£» £©£¾8£»
µ±k2£¾Ê±£¬S¡÷OPQ=8|
×ÛÉÏ£¬¡÷OPQÃæ»ýµÄȡֵ·¶Î§ÊÇ£¨8£¬+¡Þ£©£®
½âÎö£º£¨1£©ÀûÓÃÌâÒâºÍÍÖÔ²µÄ¶¨ÒåÇó½â£¬
£¨2£©ÀûÓÃÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµÁªÁ¢·½³Ì×é±í´ïÈý½ÇÐεÄÃæ»ý¿ÉÇó·¶Î§£®
Ì⿼²éÁËÍÖÔ²µÄ¶¨Ò壬¿¼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµ£¬ÊÇÖеµÌ⣮ 20.´ð°¸£º½â£º£¨1£©ÉèÇ¡ºÃ¾¹ý2´Î¼ìÑéÄܰÑÑôÐÔÑù±¾È«²¿¼ìÑé³öÀ´ÎªÊ¼þA£¬ ÔòP£¨A£©==£¬
¡àÇ¡ºÃ¾¹ýÁ½´Î¼ìÑé¾ÍÄܰÑÑôÐÔÑù±¾È«²¿¼ìÑé³öÀ´µÄ¸ÅÂÊΪ£® £¨2£©£¨i£©ÓÉÒÑÖªµÃE¦Î1=k£¬¦ÎµÄËùÓпÉÄÜȡֵΪ1£¬k+1£¬ ¡àP£¨¦Î2=1£©=£¨1-p£©k£¬p£¨¦Î2=k+1£©=1-£¨1-p£©k£¬
¡àE£¨¦Î2£©=£¨1-p£©k+£¨k+1£©[1-£¨1-p£©k]=k+1-k£¨1-p£©k£¬ ÈôE£¨¦Î1£©=E£¨¦Î2£©£¬Ôòk=k+1-k£¨1-p£©k=1£¬ £¨1-p£©k=£¬
¡à1-p=£¨£©£¬¡àp=1-£¨£©£®
¡àp¹ØÓÚkµÄº¯Êý¹ØÏµÊ½Îªp=f£¨k£©=1-£¨£©£¬£¨k¡ÊN*£¬ÇÒk¡Ý2£©£® £¨ii£©ÓÉÌâÒâÖªE£¨¦Î1£©£¼E£¨¦Î2£©£¬µÃ£¼£¨1-p£©k£¬ ¡ßp=1-£¬¡à
£¬¡àlnk£¾£¬
µÚ15Ò³£¬¹²18Ò³
Éèf£¨x£©=lnx-£¬£¨x£¾0£©£¬
¡àµ±x£¾3ʱ£¬f¡ä£¨x£©£¼0£¬¼´f£¨x£©ÔÚ£¨3£¬+¡Þ£©Éϵ¥µ÷Ôö¼õ£¬ ÓÖln4¡Ö1.3863£¬¡àln4£¾£¬ln5¡Ö1.6094£¬
£¬
£¬¡àln5£¼£¬
¡àkµÄ×î´óֵΪ4£®
½âÎö£º£¨1£©ÉèÇ¡ºÃ¾¹ý2´Î¼ìÑéÄܰÑÑôÐÔÑù±¾È«²¿¼ìÑé³öÀ´ÎªÊ¼þA£¬ÀûÓùŵä¸ÅÐÍ¡¢ÅÅÁÐ×éºÏÄÜÇó³öÇ¡ºÃ¾¹ýÁ½´Î¼ìÑé¾ÍÄܰÑÑôÐÔÑù±¾È«²¿¼ìÑé³öÀ´µÄ¸ÅÂÊ£®
£¨2£©£¨i£©ÓÉÒÑÖªµÃE¦Î1=k£¬¦ÎµÄËùÓпÉÄÜȡֵΪ1£¬k+1£¬Çó³öP£¨¦Î2=1£©=£¨1-p£©k£¬p£¨¦Î2=k+1£©=1-£¨1-p£©k£¬´Ó¶øE£¨¦Î2£©=k+1-k£¨1-p£©k£¬ÓÉE£¨¦Î1£©=E£¨¦Î2£©£¬ÄÜÇó³öp¹ØÓÚkµÄº¯Êý¹ØÏµÊ½£® £¨ii£©ÓÉE£¨¦Î1£©£¼E£¨¦Î2£©£¬µÃ£¼£¨1-p£©k£¬ÍƵ¼³ölnk£¾£¬Éèf£¨x£©=lnx-£¬£¨x£¾0£©£¬µ±x£¾3ʱ£¬f¡ä£¨x£©£¼0£¬¼´f£¨x£©ÔÚ£¨3£¬+¡Þ£©Éϵ¥µ÷Ôö¼õ£¬ÓÉ´ËÄÜÇó³ökµÄ×î´óÖµ£®
±¾Ì⿼²é¸ÅÂÊ¡¢º¯Êý¹ØÏµÊ½¡¢ÊµÊýµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊÇÖеµÌ⣮
21.´ð°¸£º½â£º£¨1£©É裬¡£¨1·Ö£©
ÁîF'£¨x£©£¾0£¬µÃx£¾1£¬F£¨x£©µÝÔö£»ÁîF'£¨x£©£¼0£¬µÃ0£¼x£¼1£¬F£¨x£©µÝ¼õ£¬¡£¨2·Ö£© ¡àF£¨x£©min=F£¨1£©=0£¬¡àF£¨x£©¡Ý0£¬¼´x2-1¡Ý2lnx£¬¡àf£¨x£©=x2-1¡£¨3·Ö£© Éè
£¬½áºÏf£¨x£©ÓëG£¨x£©ÔÚ£¨0£¬1]ÉÏͼÏó¿ÉÖª£¬ÕâÁ½¸öº¯ÊýµÄͼÏóÔÚ£¨0£¬1]
ÉÏÓÐÁ½¸ö½»µã£¬¼´h£¨x£©ÔÚ£¨0£¬1]ÉÏÁãµãµÄ¸öÊýΪ2¡£¨5·Ö£© £¨»òÓÉ·½³Ìf£¨x£©=G£¨x£©ÔÚ£¨0£¬1]ÉÏÓÐÁ½¸ù¿ÉµÃ£© £¨2£©¼ÙÉè´æÔÚʵÊýa¡Ê£¨-2£¬+¡Þ£©£¬Ê¹µÃ
¶Ôx¡Ê£¨a+2£¬+¡Þ£©ºã³ÉÁ¢£¬
Ôò£¬¶Ôx¡Ê£¨a+2£¬+¡Þ£©ºã³ÉÁ¢£¬
¼´£¬¶Ôx¡Ê£¨a+2£¬+¡Þ£©ºã³ÉÁ¢£¬¡£¨6·Ö£©
¢ÙÉ裬
ÁîH'£¨x£©£¾0£¬µÃ0£¼x£¼2£¬H£¨x£©µÝÔö£»ÁîH'£¨x£©£¼0£¬µÃx£¾2£¬H£¨x£©µÝ¼õ£¬ ¡àH£¨x£©max=h£¨2£©=ln2-1£¬
µ±0£¼a+2£¼2¼´-2£¼a£¼0ʱ£¬4a£¾ln2-1£¬¡à¹Êµ±
ʱ£¬
£¬¡ßa£¼0£¬¡à4
£®
¶Ôx¡Ê£¨a+2£¬+¡Þ£©ºã³ÉÁ¢£¬¡£¨8·Ö£©
£®
µ±a+2¡Ý2¼´a¡Ý0ʱ£¬H£¨x£©ÔÚ£¨a+2£¬+¡Þ£©Éϵݼõ£¬¡à
µÚ16Ò³£¬¹²18Ò³