»òf(x)£¯f(-x)=¡À1À´Åж¨; (3)ÀûÓö¨Àí£¬»ò½èÖúº¯ÊýµÄͼÏóÅж¨ .
9¡¢º¯ÊýµÄ½âÎö±í´ïʽ
£¨1£©.º¯ÊýµÄ½âÎöʽÊǺ¯ÊýµÄÒ»ÖÖ±íʾ·½·¨£¬ÒªÇóÁ½¸ö±äÁ¿Ö®¼äµÄº¯Êý¹ØÏµÊ±£¬Ò»ÊÇÒªÇó³öËüÃÇÖ®¼äµÄ¶ÔÓ¦·¨Ôò£¬¶þÊÇÒªÇó³öº¯ÊýµÄ¶¨ÒåÓò.
£¨2£©Çóº¯ÊýµÄ½âÎöʽµÄÖ÷Òª·½·¨ÓУº 1) ´ÕÅä·¨ 2) ´ý¶¨ÏµÊý·¨ 3) »»Ôª·¨ 4) Ïû²Î·¨ 10£®º¯Êý×î´ó£¨Ð¡£©Öµ£¨¶¨Òå¼û¿Î±¾p36Ò³£© 1 ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ£¨Åä·½·¨£©Çóº¯ÊýµÄ×î´ó£¨Ð¡£©Öµ ¡ð
2 ÀûÓÃͼÏóÇóº¯ÊýµÄ×î´ó£¨Ð¡£©Öµ ¡ð
3 ÀûÓú¯Êýµ¥µ÷ÐÔµÄÅжϺ¯ÊýµÄ×î´ó£¨Ð¡£©Öµ£º ¡ð
Èç¹ûº¯Êýy=f(x)ÔÚÇø¼ä[a£¬b]Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä[b£¬c]Éϵ¥µ÷µÝ¼õÔòº¯Êýy=f(x)ÔÚx=b´¦ÓÐ×î´óÖµf(b)£»
Èç¹ûº¯Êýy=f(x)ÔÚÇø¼ä[a£¬b]Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[b£¬c]Éϵ¥µ÷µÝÔöÔòº¯Êýy=f(x)ÔÚx=b´¦ÓÐ×îСֵf(b)£» ÀýÌ⣺
1.ÇóÏÂÁк¯ÊýµÄ¶¨ÒåÓò£º ¢Åy?x2?2x?15 ¢Æy?1?(x?1)2 x?1x?3?32.É躯Êýf(x)µÄ¶¨ÒåÓòΪ[0£¬1]£¬Ôòº¯Êýf(x2)µÄ¶¨ÒåÓòΪ_ _
3.Èôº¯Êýf(x?1)µÄ¶¨ÒåÓòΪ[?2£¬3]£¬Ôòº¯Êýf(2x?1)µÄ¶¨ÒåÓòÊÇ
?x?2(x??1)?4.º¯Êý £¬Èôf(x)?3£¬Ôòx= f(x)??x2(?1?x?2)?2x(x?2)?5.ÇóÏÂÁк¯ÊýµÄÖµÓò£º
¢Åy?x2?2x?3 (x?R) ¢Æy?x2?2x?3 x?[1,2] (3)y?x?1?2x (4)y??x2?4x?5 6.ÒÑÖªº¯Êýf(x?1)?x2?4x£¬Çóº¯Êýf(x)£¬7.ÒÑÖªº¯Êý
f(2x?1)µÄ½âÎöʽ
f(x)Âú×ã2f(x)?f(?x)?3x?4£¬Ôòf(x)= ¡£
8.Éèf(x)ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒµ±x?[0,??)ʱ,f(x)?x(1?3x),Ôòµ±x?(??,0)ʱ f(x)ÔÚRÉϵĽâÎöʽΪ 9.ÇóÏÂÁк¯ÊýµÄµ¥µ÷Çø¼ä£º ¢Å y?x2?2x?3 ¢Æy?f(x)=
?x2?2x?3 ¢Ç y?x2?6x?1
10.ÅжϺ¯Êýy??x3?1µÄµ¥µ÷ÐÔ²¢Ö¤Ã÷ÄãµÄ½áÂÛ£® 11.É躯Êýf(x)?1?x2ÅжÏËüµÄÆæÅ¼ÐÔ²¢ÇÒÇóÖ¤£º1f()??f(x)£® 21?xx
5
µÚ¶þÕ »ù±¾³õµÈº¯Êý
Ò»¡¢Ö¸Êýº¯Êý
£¨Ò»£©Ö¸ÊýÓëÖ¸ÊýÃݵÄÔËËã
1£®¸ùʽµÄ¸ÅÄһ°ãµØ£¬Èç¹ûx?a£¬ÄÇôx½Ð×öaµÄn´Î·½¸ù£¬
*
ÆäÖÐn>1£¬ÇÒn¡ÊN£®
? ¸ºÊýûÓÐż´Î·½¸ù£»0µÄÈκδη½¸ù¶¼ÊÇ0£¬¼Ç×÷n0?0¡£ µ±nÊÇÆæÊýʱ£¬nan?a£¬µ±nÊÇżÊýʱ£¬nan?|a|??2£®·ÖÊýÖ¸ÊýÃÝ
ÕýÊýµÄ·ÖÊýÖ¸ÊýÃݵÄÒâÒ壬¹æ¶¨£º
n?a(a?0)
??a(a?0)amn?nam(a?0,m,n?N*,n?1)mn£¬
a??1armn?1nam(a?0,m,n?N*,n?1)
? 0µÄÕý·ÖÊýÖ¸ÊýÃݵÈÓÚ0£¬0µÄ¸º·ÖÊýÖ¸ÊýÃÝûÓÐÒâÒå 3£®ÊµÊýÖ¸ÊýÃݵÄÔËËãÐÔÖÊ
£¨1£©a¡¤a?a (a?0,r,s?R)£»
rsrs(a)?a£¨2£©
rr?s
(a?0,r,s?R)£»
rrs(ab)?aa £¨3£©
(a?0,r,s?R)£® £¨¶þ£©Ö¸Êýº¯Êý¼°ÆäÐÔÖÊ
1¡¢Ö¸Êýº¯ÊýµÄ¸ÅÄһ°ãµØ£¬º¯Êýy?a(a?0,ÇÒa?1)½Ð×öÖ¸Êýº¯Êý£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòΪR£®
×¢Ò⣺ָÊýº¯ÊýµÄµ×ÊýµÄȡֵ·¶Î§£¬µ×Êý²»ÄÜÊǸºÊý¡¢ÁãºÍ1£® 2¡¢Ö¸Êýº¯ÊýµÄͼÏóºÍÐÔÖÊ a>1 0£¨1£©ÔÚ[a£¬b]ÉÏ£¬f(x)?a(a?0ÇÒa?1)ÖµÓòÊÇ[f(a),f(b)]»ò
x[f(b),f(a)]£»
6
£¨2£©Èôx?0£¬Ôòf(x)?1£»f(x)È¡±éËùÓÐÕýÊýµ±ÇÒ½öµ±x?R£» £¨3£©¶ÔÓÚÖ¸Êýº¯Êýf(x)?a(a?0ÇÒa?1)£¬×ÜÓÐf(1)?a£»
x¶þ¡¢¶ÔÊýº¯Êý
£¨Ò»£©¶ÔÊý
1£®¶ÔÊýµÄ¸ÅÄһ°ãµØ£¬Èç¹ûa?N(a?0,a?1)£¬ÄÇôÊýx½Ð×öÒÔ£®aΪµ×£®£®NµÄ¶ÔÊý£¬¼Ç×÷£ºx?logaN£¨a¡ª µ×Êý£¬N¡ª ÕæÊý£¬logaN¡ª ¶ÔÊýʽ£©
˵Ã÷£º¡ð1 ×¢Òâµ×ÊýµÄÏÞÖÆa?0£¬ÇÒa?1£»
x2 a?N?logaN?x£» ¡ð
3 ×¢Òâ¶ÔÊýµÄÊéд¸ñʽ£® ¡ð
xlogaNÁ½¸öÖØÒª¶ÔÊý£º
1 ³£ÓöÔÊý£ºÒÔ10Ϊµ×µÄ¶ÔÊýlgN£» ¡ð
2 ×ÔÈ»¶ÔÊý£ºÒÔÎÞÀíÊýe?2.71828?Ϊµ×µÄ¶ÔÊýµÄ¶ÔÊýlnN£® ¡ð
? Ö¸ÊýʽÓë¶ÔÊýʽµÄ»¥»¯
ÃÝÖµ ÕæÊý
ab£½ N?logaN£½ b
µ×Êý Ö¸Êý ¶ÔÊý £¨¶þ£©¶ÔÊýµÄÔËËãÐÔÖÊ
Èç¹ûa?0£¬ÇÒa?1£¬M?0£¬N?0£¬ÄÇô£º 1 loga(M¡¤N)?logaM£«logaN£» ¡ð
M?logaM£logaN£» N3 logaMn?nlogaM (n?R)£® ¡ð
2 loga¡ð
×¢Ò⣺»»µ×¹«Ê½
logab?logcb £¨a?0£¬ÇÒa?1£»c?0£¬ÇÒc?1£»b?0£©£®
logca1n£¨2£©logab?£® logab£»
logbamÀûÓû»µ×¹«Ê½ÍƵ¼ÏÂÃæµÄ½áÂÛ £¨1£©logambn?£¨¶þ£©¶ÔÊýº¯Êý
1¡¢¶ÔÊýº¯ÊýµÄ¸ÅÄº¯Êýy?logax(a?0£¬ÇÒa?1)½Ð×ö¶ÔÊýº¯Êý£¬ÆäÖÐxÊÇ×Ô±äÁ¿£¬º¯ÊýµÄ¶¨ÒåÓòÊÇ£¨0£¬+¡Þ£©£®
×¢Ò⣺¡ð1 ¶ÔÊýº¯ÊýµÄ¶¨ÒåÓëÖ¸Êýº¯ÊýÀàËÆ£¬¶¼ÊÇÐÎʽ¶¨Ò壬עÒâ±æ±ð¡£È磺y?2log2x£¬y?log5x ¶¼²»ÊǶÔÊýº¯Êý£¬¶øÖ»ÄܳÆ
5ÆäΪ¶ÔÊýÐͺ¯Êý£®
2 ¶ÔÊýº¯Êý¶Ôµ×ÊýµÄÏÞÖÆ£º(a?0£¬ÇÒa?1)£® ¡ð
7
2¡¢¶ÔÊýº¯ÊýµÄÐÔÖÊ£º a>1 32.521.501¡¢Ãݺ¯Êý¶¨Ò壺һ°ãµØ£¬ÐÎÈçy?x(a?R)µÄº¯Êý³ÆÎªÃݺ¯Êý£¬ÆäÖÐ?Ϊ³£Êý£® 2¡¢Ãݺ¯ÊýÐÔÖʹéÄÉ£®
£¨1£©ËùÓеÄÃݺ¯ÊýÔÚ£¨0£¬+¡Þ£©¶¼Óж¨Òå²¢ÇÒͼÏó¶¼¹ýµã£¨1£¬1£©£» £¨2£©??0ʱ£¬Ãݺ¯ÊýµÄͼÏóͨ¹ýԵ㣬²¢ÇÒÔÚÇø¼ä[0,??)ÉÏÊÇÔöº¯Êý£®ÌØ±ðµØ£¬µ±??1ʱ£¬Ãݺ¯ÊýµÄͼÏóÏÂ͹£»µ±0???1ʱ£¬Ãݺ¯ÊýµÄͼÏóÉÏ͹£»
£¨3£©??0ʱ£¬Ãݺ¯ÊýµÄͼÏóÔÚÇø¼ä(0,??)ÉÏÊǼõº¯Êý£®ÔÚµÚÒ»ÏóÏÞÄÚ£¬µ±x´ÓÓÒ±ßÇ÷ÏòÔµãʱ£¬Í¼ÏóÔÚyÖáÓÒ·½ÎÞÏ޵رƽüyÖáÕý°ëÖᣬµ±xÇ÷ÓÚ??ʱ£¬Í¼ÏóÔÚxÖáÉÏ·½ÎÞÏ޵رƽüxÖáÕý°ëÖᣮ ÀýÌ⣺
1. ÒÑÖªa>0£¬a
0£¬º¯Êýy=aÓëy=loga(-x)µÄͼÏóÖ»ÄÜÊÇ ( )
x
?
log27?2log522.¼ÆË㣺 ¢Ùlog32? ;¢Ú24?log23= £»2535= ;
log27641¢Û0.064??(?7)0?[(?2)3]??16?0.75?0.01 =
13431283.º¯Êýy=log1(2x-3x+1)µÄµÝ¼õÇø¼äΪ
2
24.Èôº¯Êýf(x)?logax(0?a?1)ÔÚÇø¼ä[a,2a]ÉϵÄ×î´óÖµÊÇ×îСֵµÄ3±¶£¬Ôòa=
f(x)?0µÄ
5.ÒÑÖªf(x)?log1?x(a?0ÇÒa?1)£¬£¨1£©Çóf(x)µÄ¶¨ÒåÓò£¨2£©Çóʹ
a1?x
8
xµÄȡֵ·¶Î§