?100x?100?16、设某种电子管的寿命X的密度函数f(x)??x2
x?100??0(1) 若1个电子管在使用150小时后仍完好,那么该电子管使用时间少于200小时的
概率是多少?
(2) 若1个电子系统中装有3个独立工件的这种电子管,在使用150小时后恰有1个
损坏的概率是多少。 17、设钻头的寿命(即钻头直到磨损为止所钻的地层厚度,以米为单位)服从指数分布,
钻头平均寿命为1000米,现要打一口深度为2000米的井,求 (1)只需一根钻头的概率; (2)恰好用两根钻头的概率。
18、某公共汽车站从上午7时起第15分钟发一班车,如果乘客到达此汽车站的时间X是7时至7时30分的均匀分布,试求乘客在车站等候 (1)不超过15分钟的概率;(2)超过10分钟的概率。 19、自动生产线在调整以后出现废品的概率为 0.1,生产过程中出现废品时重新进行调整,问在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?
20、设在一段时间内进入某一商店的顾客人数服从POSSION分布,每个顾客购买某种物品的概率为p,并且各个顾客是否购买该物品是相互独立的,求进入商店的顾客购买该种物品人数的分布律。
21、设每页书上的印刷错误个数服从泊松分布,现从一本有500个印刷错误的500页的书上随机地取5页,求这5页各页上的错误都不超过2个的概率。
22、已知每天到某炼油厂的油船数X服从参数为2的泊松分布,而港口的设备一天只能为三只油船服务,如果一天中到达的油船超过三只,超出的油船必须转到另一港口。求: (1)这一天必须有油船转走的概率;
(2)设备增加到多少,才能使每天到达港口的油船有90%可以得到服务。 (3)每天到达港口油船的最可能只数。
23、某实验室有12台电脑,各台电脑开机与关机是相互独立的,如果每台电脑开机占总工作时间的3/4,试求在工作时间任一时刻关机的电脑台数超过两台的概率以及最有可能有几台电脑同时开机。
24、设有各耗电7.5KW的车床10台,每台车床使用情况是相互独立的,且每台车床每小时平均开车12分钟,为这10台车床配电设备的容量是55KW,试求该配电设备超载的概率。
25、一台电子设备内装有5个某种类型的电子管,已知这种电子管的寿命(单位:小时)服从指数分布,且平均寿命为1000小时。如果有一个电子管损坏,设备仍能正常工作的概率为95%,两个电子管损坏,设备仍能正常工作的概率为70%,若两个以上电子管损坏,则设备不能正常工作。求这台电子设备在正常工作1000小时后仍能正常工作的概率(各电子管工作相互独立)。
概率论与数理统计 第13页(共57页)
26、某地区18岁的女青年的血压(收缩压,以mm—Hg计)服从N(110,12)。在该地
2100?X?120?;区任选一18岁的女青年,测量她的血压X。(1)求P?X?105?,P?(2)
确定最小的x,使P?X?x??0.05。?()?0.7976,?(1.645)?0.95
27、将一温度调节器放置在贮存着某种液体的容器内。调节器整定在d℃,液体的温度X是一个随机变量,且X~N(d,0.5) (1)若d=90,求X小于89的概率。(2)若要求保持液体的温度至少为80的概率不低于0.99,问d至少为多少??(2.327)?0.99,?(2)?0.9772
256ax?1??28、设随机变量的分布函数F(x)??bxlnx?cx?d1?x?e
?dx?e? (1)确定a,b,c,d的值;(2)P(|X|?e) 2?A?Be??xx?0(??0) 29、设连续型随机变量X的分布函数为F(x)?? x?00? 求(1)常数A,B的值;(2)P(?1?X?1)
30、有一个半径为2米的圆盘形靶子,设击中靶上任一同心圆盘的概率与该圆盘的面积成
正比,并设均能中靶,如以X表示击中点与靶心的距离,求X的分布函数和密度函数。 31、设随机变量X的密度函数fx(x)??32、设随机变量的分布律为
X ??1?|x|?1?x?12,求Y?X?1的密度函数。
其他?0 ? 3?424 0.2 0.1 0.7 求随机变量Y?SinX的分布函数。
33、已知10个元件中有7个合格品和3个次品,每次随机地抽取1个测试,测试后不放回,直至将3个次品找到为止,求需测试次数X的分布律。
概率论与数理统计 第14页(共57页)
?0x??1?12?3?1?x?0???1?34、已知X的分布函数为FX(x)??,求Y??SinX?的分布函数。
20?x?16???21?x?2?3x?2??135、设某产品的寿命T服从N(160,?)的正态分布,若要求寿命低于120小时的概率不超过0.1,试问应控制?在什么范围内,并问寿命超过210小时的概率在什么范围内?
36、某厂决定在工人中增发高产奖,并决定对每月生产额最高的5%的工人发放高产奖,已知每人每月生产额X~N(4000,60),试问高产奖发放标准应把月生产额定为多少? 37、在长为1的线段随机地选取一点,短的一段与长的一段之比小于1/4的概率是多少?
22?2xx?(0,?)?38、设X的分布密度为fX(x)???2 求Y?SinX的密度函数。
x?(0,?)??0
39、设X的分布密度为fX(x)?求(1)Y?X21?|x|e 2(2)Y?|X|(3)Y?ln|X|的概率密度。
四、证明题
1、设F(x)为随机变量X的分布函数,证明:当x1?x2时,有F(x1)?F(x2) 2、证明:若X服从参数为?的指数分布,则P(X?r?s|X?s)?P(X?r) 3、证明:X服从?a,b?上均匀分布,则Y?cX?d也服从均匀分布。
4、设随机变量X的分布函数FX(x)为严格单调连续函数,则Y?FX(X)服从均匀分布。 5、设随机变量X的分布密度f(x),分布函数F(x),f(x)为关于y轴对称,证明:
a1对于任意正数a有 F(?a)?1?F(a)???f(x)dx
206、设随机变量X的分布密度f(x),分布函数F(x),f(x)为关于y轴对称,证明:
概率论与数理统计 第15页(共57页)
对于任意正数a有 P(|X|?a)?2F(a)?1
7、设f(x),g(x)是两个随机变量的密度函数,证明:对于任意正数?(0???1), 有?f(x)?(1??)g(x)是某一随机变量的密度函数。
第三章 多维随机变量及其分布
一、填空题
x?y?0?01、因为二元函数F(x,y)?? 不满足 ,所以F(x,y)不是某一个
x?y?01?二维随机变量的联合分布函数。
2、设二维随机变量的联合分布律为 X Y 1 2 1 2 3 1/16 3/8 1/16 1/12 1/6 1/4 则P(Y?1|X?2)? 。
3、设X和Y是独立的随机变量,其分布密度函数为
0?x?1y?0?e?y?1 fX(x)?? ,fY(y)??
其他y?000?? 则(X,Y)的联合分布密度函数为 。 4、设二维随机变量的联合分布律为 X Y 1 2 1 2 3 1/6 1/9 1/18 1/3 a b 若X和Y独立,则a= ,b= 。
概率论与数理统计 第16页(共57页)