正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移, 所组成的两个正方形组成轴对称图形. 故选:C.
【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键.
10.【思路分析】本题考查空间想象能力.
【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成, 由第一个图形可知:阴影部分的两部分可构成正方形的四分之一, 正方形的面积=4×4=16,
∴图中阴影部分的面积是16÷4=4. 故选:B.
【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系.
11.【思路分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长. 【解答】解:如图,连接CP,
由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP, ∴AP=CP,
∴AP+PE=CP+PE,
∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长, 此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE, ∴AF=CE,
∴AP+EP最小值等于线段AF的长, 故选:D.
【点评】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.
12.【思路分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1. 【解答】解:如图,
作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.
∵菱形ABCD关于AC对称,M是AB边上的中点, ∴M′是AD的中点, 又∵N是BC边上的中点, ∴AM′∥BN,AM′=BN, ∴四边形ABNM′是平行四边形, ∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值为1, 故选:B.
【点评】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.
13.【思路分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案. 【解答】解:∵D为BC的中点,且BC=6, ∴BD=1BC=3, 2由折叠性质知NA=ND, 则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12, 故选:A. 【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 14.【思路分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长. 【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM, 1∴∠HEF=∠HEM+∠FEM=×180°=90°, 2 同理可得:∠EHG=∠HGF=∠EFG=90°, ∴四边形EFGH为矩形, AD=AH+HD=HM+MF=HF,HF?EH2?EF2?122?162?20 , ∴AD=20厘米. 故选:C. 【点评】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键. 15.【思路分析】先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案. 【解答】解:∵△BDE由△BDC翻折而成, ∴BE=BC. ∵AE+BE=AB, ∴AE+CB=AB, 故D正确, 故选:D.
【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.
16.【思路分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长. 【解答】解:如图,连接AE,
∵AB=AD=AF,∠D=∠AFE=90°, 在Rt△AFE和Rt△ADE中,
?AE=AE∵? , ?AF=AD∴Rt△AFE≌Rt△ADE, ∴EF=DE,
设DE=FE=x,则EC=6-x. ∵G为BC中点,BC=6, ∴CG=3,
在Rt△ECG中,根据勾股定理,得:(6-x)2+9=(x+3)2, 解得x=2.