µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ µÚ17Ò³ ¹²32Ò³
µÄÖÐÐľàÀë¡£³ÌÐòÔÚ¼ÆË㿹Ť³ÐÔØÁ¦Ê±£¬ÎªÁ˼ÆËã½ØÃæÊÜŤËÜÐÔµÖ¿¹¾ØʹÓõIJÎÊý¡£h = HT + (T1 + T2)/2£¬b = BT + ÑéËãŤתÓúñ¶È¡£
µ±T2ÊäÈëΪ0ʱ£¬³ÌÐòĬÈÏΪÊÇTÐͽØÃ棨¿ª¿Ú½ØÃ棩¡£´Ëʱ£¬BTÖµ²»Æð×÷Óã¬h = HT +T1 /2£¬b = 2¡ÁÑéËãŤתÓúñ¶È¡£
Ïà¹Ø֪ʶ
µ¼Èë¡°½ØÃæÌØÐÔ¼ÆËãÆ÷¡±Éú³ÉµÄ¡°*.sec¡±¸ñʽ½ØÃæÊý¾Ýʱ£¬»¹ÐèÒª¶¨Òå¼ôÇÐÑéËãµÄλÖ㬳ÌÐòĬÈÏֵΪZ1¡¢Z3£½0£¬Z2£½ÖÊÐÄ¡£Z1¡¢Z3µÄλÖý«¾ö¶¨Qy£¨¼ôÓ¦Á¦¼ÆËãµãÒÔÉϽØÃæµÄÃæ»ý¾Ø£©Óëby£¨¼ôÇÐÑéËãÓø¹°åºñ¶È£©µÄ´óС£¬ËùÒÔÓû§±ØÐèÒªÕýÈ·ÊäÈëZ1¡¢Z3µÄλÖã¨Z1¡¢Z3>0£©¡£
£¨ÑéËãŤתÓúñ¶ÈÔõôÌîд£¿---¸¹°åºñ¶ÈÖ®ºÍ£¿£© Ïà¹ØÎÊÌâ
4.23ÈçºÎ¿¼ÂǺᡢÊúÏòÔ¤Ó¦Á¦¸Ö½îµÄ×÷Óã¿
¾ßÌåÎÊÌâ
¶Ô¿Õ¼äÔ¤Ó¦Á¦ÏäÁº£¬ÈçºÎ¿¼ÂǺᡢÊúÏòÔ¤Ó¦Á¦µÄ×÷Óã¿ Ïà¹ØÃüÁî
Ä£ÐÍ¡µ²ÄÁϺͽØÃæÌØÐÔ¡µ½ØÃæ¸Ö½î...
ÎÊÌâ½â´ð
MIDAS³ÌÐòÖеÄÁºµ¥ÔªÊÇ·ûºÏƽ½ØÃæ¼Ù¶¨ÀíÂ۵ģ¬ËùÒÔºá¶ÏÃæµÄ¸Õ¶È·Ç³£´ó¡£¶ÔÓÚÁºµ¥Ôª¿¼ÂǺᡢÊúÏòÔ¤Ó¦Á¦Ã»ÓÐʵ¼ÊÒâÒå¡£ËäÈ»ÔÚ¡°¿¹¼ô¸Ö½î¡±±íµ¥µÄ¡°¸¹°åÊú½î¡±Ñ¡ÏîÀï¿ÉÒÔÊäÈëÊúÏòÔ¤Ó¦Á¦¸Ö½î£¬µ«Ö»Ìṩ¿¹¼ô³ÐÔØÄÜÁ¦£¬²»»áÒòΪÊúÏòÔ¤Ó¦Á¦µÄ×÷Óöø²úÉú±äÐΡ£
¶ÔÓÚÏäÁº±ØÐ뿼ÂǺᡢÊúÏòÔ¤Ó¦Á¦Ê±£¬¿ÉʹÓÃʵÌåµ¥ÔªÀ´½¨Á¢Ä£ÐÍ£¬ÔÙÓñäͨµÄ·½·¨¶¨Òå¸÷¸ö·½ÏòµÄÔ¤Ó¦Á¦¸Ö½î¡£
µÚ17Ò³ ¹²32Ò³ µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ
µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ µÚ18Ò³ ¹²32Ò³
Ïà¹Ø֪ʶ
¶ÔʵÌåµ¥Ôª¡¢°åµ¥ÔªÊäÈëÔ¤Ó¦Á¦¸Ö½îʱ£¬²»ÄÜ°´ÕÕÁºµ¥ÔªÊäÈëÔ¤Ó¦Á¦¸Ö½îµÄ·½·¨ÊäÈ롣ĿǰֻÄܱäͨµØÄ£ÄâÔ¤Ó¦Á¦¸Ö½î£¨È磺èì¼Üµ¥ÔªÊ©¼Ó³õÀÁ¦µÄ·½·¨£©¡£ Ïà¹ØÎÊÌâ
4.24°åµ¥Ôª¡°ÃæÄÚºñ¶È¡±Óë¡°ÃæÍâºñ¶È¡±µÄÇø±ð£¿
¾ßÌåÎÊÌâ
°åµ¥Ôª¡°ÃæÄÚºñ¶È¡±Óë¡°ÃæÍâºñ¶È¡±µÄÇø±ð£¿ Ïà¹ØÃüÁî
Ä£ÐÍ¡µ²ÄÁϺͽØÃæÌØÐÔ¡µºñ¶È¡
µÚ18Ò³ ¹²32Ò³ µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ
µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ µÚ19Ò³ ¹²32Ò³
ÎÊÌâ½â´ð
¡°ÃæÄÚºñ¶È¡±ÊÇΪÁ˼ÆËãƽÃæÄڵĸնȣ¨In-Plane Stiffness£©¶øÊäÈëµÄºñ¶È£¬¡°ÃæÍâºñ¶È¡±ÊÇΪÁ˼ÆËãƽÃæÍâµÄ¸Õ¶È£¨Out-of- Plane Stiffness£©¶øÊäÈëµÄºñ¶È¡£Ò»°ã¶ÔÓÚʵÐÄ°åµ¥ÔªµÄÃæÄÚ¡¢ÃæÍâºñ¶ÈÈ¡Ïàֵͬ£¬¶ÔÓÚ¿ÕÐÄ°åµ¥Ôª¾ÍÐèÒª·Ö±ðÊäÈëºñ¶È¡£µ±³ÌÐò¼ÆËã°åµ¥ÔªµÄ×ÔÖØʱ£¬²ÉÓõÄÊÇÃæÄÚºñ¶È¡£Èç¹ûÓû§Ö»ÊäÈëÁËÃæÍâºñ¶È£¬³ÌÐòÈ¡ÓøÃÖµ¡£
Àý£º¿ÕÐÄ°åµÄÃæÄÚÃæÍâºñ¶È¼ÆËã
ÃæÄÚºñ¶Èti£º¸ù¾ÝÃæ»ýµÈЧÔÀí
ti?b?t1?b?t3?(b?t2?t4)?(h?t1?t3)
bÃæÍâºñ¶Èto£º¸ù¾Ý¸Õ¶ÈµÈЧÔÀí
btobh3(b?t2?t4)?(h?t1?t3)3??121212
Ïà¹Ø֪ʶ
MIDAS/CivilÖеİ嵥ԪµÄÃæÍâ¸Õ¶È¿É·ÖΪÁ½ÖÖ£¬¼ÈDKT¡¢DKQ£¨Discrete Kirchhoff Element£©ºÍDKMT¡¢DKMQ£¨Discrete Kirchhoff-Midlin Element£©¡£DKT(Èý½ÇÐε¥Ôª)ºÍDKQ£¨ËıßÐε¥Ôª£©ÊÇÒÔ±¡°åÀíÂÛ(Kirchhoff Plate Theory)Ϊ»ù´¡¿ª·¢µÄ£»DKMT£¨Èý½ÇÐε¥Ôª£©ºÍDKMQ£¨ËıßÐε¥Ôª£©ÊÇÒÔºñ°åÀíÂÛ£¨Mindlin-Reissner Plate Theory£©Îª»ù´¡¿ª·¢µÄ¡£Èý½ÇÐΰ嵥ԪµÄÃæÄÚ¸Õ¶ÈʹÓÃÁËLST£¨Linear Strain Triangle£©ÀíÂÛ£¬ËıßÐΰ嵥ԪʹÓÃÁ˵ȲÎÊýµ¥Ôª£¨Isoparametric Plane Stress Formulation with Incompatible Modes£©ÀíÂÛ¡£ Ïà¹ØÎÊÌâ
34.25¶¨Òå¡°ËÜÐÔ²ÄÁÏ¡±Ó붨Òå¡°·Çµ¯ÐԽ¡±µÄÇø±ð£¿
¾ßÌåÎÊÌâ
µÚ19Ò³ ¹²32Ò³ µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊ
Ìâ
µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ µÚ20Ò³ ¹²32Ò³
ÇëÎÊÉ趨ËÜÐÔ²ÄÁÏÓëÉ趨·Çµ¯ÐÔ½ÂÓÐʲôÇø±ð£¿ Ïà¹ØÃüÁî
Îļþ¡µ²ÄÁÏÓë½ØÃæÌØÐÔ¡µËÜÐÔ²ÄÁÏ Îļþ¡µ²ÄÁÏÓë½ØÃæÌØÐÔ¡µ·Çµ¯ÐÔ½ÂÌØÐÔÖµ Ä£ÐÍ¡µ±ß½çÌõ¼þ¡µÒ»°ãÁ¬½ÓÌØÐÔÖµ
ÎÊÌâ½â´ð
ËÜÐÔ²ÄÁÏÓÃÓÚ¾²Á¦²ÄÁÏ·ÇÏßÐÔ·ÖÎö£¬ÊǶԲÄÁϱ¾¹¹ÌØÐÔµÄÒ»¸ö¶¨Ò壻·Çµ¯ÐÔ½ÂÔòÊÇÓÃÓÚÖ´Ðж¯Á¦²ÄÁÏ·ÇÏßÐÔ·ÖÎö£¬ÊǶԱ߽çÌõ¼þµÄÒ»¸ö¶¨Òå¡£
4.26¶¨Òå¡°·Çµ¯ÐԽ¡±Ê±£¬ÎªÊ²Ã´Ìáʾ¡°ÏîÄ¿£º²»ÄÜͬʱʹÓõIJÄÁÏ¡¢½ØÃæºÍ¹¹
¼þÀàÐÍ¡±£¿
¾ßÌåÎÊÌâ
ÔÚ¶¨Òå·ÖÅä·Çµ¯ÐÔ½Âʱ£¬³ÌÐò±¨´í¡°²»ÄÜͬʱʹÓõIJÄÁÏ¡¢½ØÃæºÍ¹¹¼þÀàÐÍ¡±¡£ÎÒ¶¨ÒåµÄÊǸֽî»ìÄýÍÁÖùµÄ½ÂÌØÐÔ¡£ Ïà¹ØÃüÁî
Ä£ÐÍ¡µ²ÄÁÏÓë½ØÃæÌØÐÔ¡µ²ÄÁÏ Ä£ÐÍ¡µ²ÄÁÏÓë½ØÃæÌØÐÔ¡µ½ØÃæ
Ä£ÐÍ¡µ²ÄÁÏÓë½ØÃæÌØÐÔ¡µ¶¨Òå·Çµ¯ÐÔ½ÂÌØÐÔÖµ
ÎÊÌâ½â´ð
ÔÚ¶¨Òå·Çµ¯ÐÔ½Âʱ£¬Ëù¶¨ÒåµÄ½ÂµÄ²ÄÁÏÀàÐÍ¡¢¹¹¼þ½ØÃæ±ØÐëͳһ¡£¼´¸Ö½î»ìÄýÍÁ½á¹¹µÄ½Â±ØÐë²ÉÓøֽî»ìÄýÍÁ²ÄÁϺͽØÃ棬¸Ö½á¹¹µÄ½Â±ØÐë²ÉÓøֲĺ͸ֽṹµÄ½ØÃæ¡£Èç¹ûÔÚ¶¨Òå¸Ö½î»ìÄýÍÁ½á¹¹µÄ½ÂʱѡÔñ¸Ö²ÄµÄ²ÄÁϺͽØÃ棬Ôò³ÌÐò»áÌá³ö¾¯¸æ¡°²»ÄÜͬʱʹÓõIJÄÁÏ¡¢½ØÃæºÍ¹¹¼þÀàÐÍ¡±¡£ Ïà¹Ø֪ʶ
µÚ20Ò³ ¹²32Ò³ µÚËÄÕ ¡°Ä£ÐÍ¡±Öеij£¼ûÎÊÌâ