无底圆筒可视为在两力偶M(F′N2、F′N3)、M(FNA、Gmin)作用下平衡,即
M(FNA、Gmin)-M(F′N2、F′N3)= 0 故有 Gmin R-2(R-r)W = 0 Gmin = 2(1-r/R)W
F′N3
F′N2
(1) (2) (3)
解:图b)
若圆筒有底,选整体为研究对象,受力如图(3)所示。地面对装球的有底圆筒只有一个约束反力FN与整体的合力(G、W、W)平衡,且两力等值、反向、共线;故不论圆筒有多轻都不会翻倒。
2-13*、如图2-13所示一气动夹具中,已知气体压强q=40N/cm2,气缸直径d=8cm,α=15°,a=15cm。求杠杆对工件的压力FQ的值。
解题提示
此题宜选用两个研究对象:铰链A、 BCD杆。其受力图为
(a) (b) 图2-13
由受力图(a)列平衡方程求得F1,再由图(b)列平衡方程求得FQ。
2-14、用节点法试求图2-14所示桁架中各杆的内力。已知G=10kN,α=45°。 2-15、若已知W值,试用截面法求图2-15所示桁架中杆1、2、3的内力。 解题提示
平面静定桁架内力的计算方法
1、节点法——逐个取节点为研究对象,列平衡方程求出杆件全部内力的方法。其步骤如下:
图2-14 图2-15
①一般先求出桁架的支座反力。
②从具有连接两个杆件且有主动力作用的节点(或只有两个未知反力的节点)开始,逐个取其它节点为研究对象,用解析法求出杆的内力的大小和方向。
注意事项:
画各节点受力图时,各杆的内力均以拉力方向图示;
2、截面法——用一截面假想地把桁架切开,取其中任一部分为研究对象,列平衡方程求出被截杆件内力的方法。其步骤如下:
①先求出桁架的支座反力。 ②通过所求内力的杆件,用一截面把桁架切成两部分,取半边桁架为研究对象,用解析法求出杆的内力的大小和方向。
注意事项:
①只截杆件,不截节点;所取截面必须将桁架切成两半,不能有杆件相连。 ②每取一次截面,截开的杆件数不应超过三根。 ③被截杆件的内力图示采用设正法。
图2-14 节点选取顺序:C→B→D。
图2-15 求出桁架的支座反力后,用一截面将桁架沿1、2、3杆截开,取桁架左部(或右部)为研究对象即可。
第二章 平面力系习题参考答案
一、判断题
2-1(错)、2-2(对)、2-3(错)、2-4(对)、2-5(对)、2-6(对)
二、单项选择题
2-1(C)、2-2(B )、2-3(C)
三、计算题
2-1 FR′=√ 2 F,MO=2Fa
2-2 (a)FAx=0,FAy= qa/3,FB=2qa/3 (b)FAx=0,FAy=-qa,FB=2qa
(c)FAx=0,FAy= qa, FB=2qa (d)FAx=0,FAy=11 qa/6,FB=13qa/6 (e)FAx=0,FAy=2qa,MA=-3.5qa2(f)FAx=0,FAy=3qa,MA=3qa2 (g)FA=2qa,FBx=-2qa,FBy=qa (h)FAx=0,FAy=qa,FB=0 2-3 (a)FA=-F/2(↓),FB=F(↑),FC=F/2(↑),FD=F/2(↑)
(b)FA=-(qa/2 + M/a)(↓),FB= qa + F + M/a(↑),
FC= qa /2(↑),FD= qa/2(↑)
四、应用题
2-4 (a)FAx=2G,FAy= -G,FB=2√2 G(拉) (b)FAx=-2G,FAy= -G,FB=2√2 G(压) 2-5 l=25.2m 2-6 Gp=7.41kN
2-7 FAx=0.192G, FAy=2.33G, FT=1.92G 2-8 FAx=-4F/3,FAy= F/2,FBx=F/3,FBy=F/2 2-9 F= FTh/H,FBD =G/2 + FTha/2bH
2-10 FOx=-0.45kN,FOy= 0.6kN,FAx=0.45kN,FAy=0.5kN 2-11 FCx=FP,FCy = FP, FBx =-FP,FBy = 0 2-12 Gmin = 2(1-r/R)W 2-13 FQ=15kN
2-14 F1=14.14kN,F2=-10kN,F3=10kN,F4=-10kN,F5=14.14kN,F6=-20kN 2-15 F1=W, F2=-1.414W, F3=0
第三章 空间力系
一、判断题
3-1、当力与某轴平行或相交时,则力对该轴之矩为零。 ( )
二、单项选择题
3-1、如图1所示,力F作用在长方体的侧平面内。若以Fx、Fy、Fz分别表示力F在x、y、z轴上的投影,以M x(F)、M y(F)、 z M z(F)表示力F对x、y、z轴的矩,则以下 表述正确的是( )。 A.、 Fx =0, M x(F)≠0
B、 Fy =0, M y(F)≠0 F C、 Fz =0, M z(F)≠0 O y D、 Fy =0, M y(F)=0
x 图1
三、计算题
3-1、如图3-1所示,已知在边长为a的正六面体上有F1=6kN,F2=4kN, F3=2kN。试计算各力在三坐标中的投影。 解题提示
首先要弄清各力在空间的方位,再根据力的投 影计算规则计算各力在三坐标轴上的投影量。
本题中F1为轴向力,仅在z轴上有投影;F2为 平面力,在z轴上无投影;F3为空间力,在三坐标轴 上都有投影,故应按一次投影法或二次投影法的计算
方法进行具体计算。 图3-1
3-2、如图3-2所示,水平转盘上A处有一力F=1kN作用,F在垂直平面内,且与过A点的切线成夹角α=60°,OA与y轴方向的夹角β=45°,h= r =1m。试计算Fx 、Fy 、Fz 、M x(F)、M y(F)、M z(F)之值。
解题提示:题中力F应理解为空间力。 解:
Fx =Fcosαcosβ=1000cos60°cos45°=354N Fy =-Fcosαsinβ= -1000cos60°sin45°= -354N Fz =-Fsinα= -1000 sin60°= -866N M x(F)= M x(Fy)+ M x(Fz) = -Fyh + Fz rcosβ=354×1-866×1×cos45° =-258N.m
M y(F)= M y(Fx)+ M y(Fz) = Fxh- Fz rsinβ=354×1+866×1×sin45°
=966N.m 图3-2 M z(F)= M z(Fxy)= -Fcosα×r