2020届河南省郑州市高考数学三模试卷(理科)有答案(已纠错)

/

∴AC2=AB2+BC2﹣2AB?BC?cos60°=3. ∴AB2=AC2+BC2.则BC⊥AC. ∵CF⊥平面ABCD,AC?平面ABCD, ∴AC⊥CF,而CF∩BC=C, ∴AC⊥平面BCF. ∵EF∥AC, ∴EF⊥平面BCF;

(2)解:分别以直线CA,CB,CF为x轴,y轴,z轴建立如图所示的空间直角坐标系, 设AD=CD=BC=CF=1,令FM=λ(则C(0,0,0),A(∴

=(﹣

),

,0,0),B(0,1,0),M(λ,0,1), =(λ,﹣1,1),

,1,0),

设=(x,y,z)为平面MAB的一个法向量, 由

,取x=1,则=(1,

),

∵=(1,0,0)是平面FCB的一个法向量, ∴cos<

>=

=

∵,∴当λ=0时,cosθ有最小值为,

∴点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为

20.已知圆C1:x+y=r(r>0)与直线l0:y=动点M满足

2

2

2

相切,点A为圆C1上一动点,AN⊥x轴于点N,且

,设动点M的轨迹为曲线C.

(1)求动点M的轨迹曲线C的方程;

(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.

【考点】KP:圆锥曲线的范围问题;J3:轨迹方程;KL:直线与椭圆的位置关系.

【分析】(1)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.推出N(x0,0).通过直线与圆相切,求出圆的方程,然后转化求解曲线C的方程.

/

/

(2)①假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),联立直线与椭圆方程,结合韦达定理,通过

,以及弦长公式,利用基本不等式求出范围.②若直线l的斜率不存在,设

OP所在直线方程为y=x,类似①求解即可.

【解答】解:(I)设动点M(x,y),A(x0,y0),由于AN⊥x轴于点N.∴N(x0,0). 又圆与直线

相切,∴

∴圆.

由题意,,得

∴.

, 即∴

将代入x2+y2

=9,得曲线C的方程为

(II)(1)假设直线l的斜率存在,设其方程为y=kx+m,设P(x1,y1),Q(x2,y2),

联立,可得(1+2k2

)x2

+4kmx+2m2

﹣8=0.

由求根公式得

.(*)

∵以PQ为直径的圆过坐标原点O,∴

.即

∴x1x2+y1y2=0.即∴x1x2+(kx1+m)(kx2+m)=0. 化简可得,.

将(*)代入可得

,即3m2

﹣8k2

﹣8=0.

即,又.

将代入,可

/

/

=.

∴当且仅当,即时等号成立.又由,∴,

∴.

(2)若直线l的斜率不存在,因以PQ为直径的圆过坐标原点O,故可设OP所在直线方程为y=x,

联立解得,同理求得,

.综上,得.

21.已知函数f(x)=(x+a)ln(x+a),g(x)=﹣+ax.

(1)函数h(x)=f(ex﹣a)+g'(ex),x∈,求函数h(x)的最小值; (2)对任意x∈上h'(x)≥0,h(x)递增,h(x)的最小值为

②当﹣1<a﹣1<1即0<a<2时,在x∈上h'(x)≤0,h(x)为减函数,在在x∈上h'(x)≥0,h(x)为增函数.

∴h(x)的最小值为h(a﹣1)=﹣ea﹣1+a.

③当a﹣1≥1即a≥2时,在上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1﹣a)e+a. 综上所述,当a≤0时h(x)的最小值为(x)最小值为(1﹣a)e+a. (II)设

,F'(x)=ln(x﹣1)+1+a(x﹣1)(x≥2).

,当0<a<2时h(x)的最小值为﹣ea﹣1+a,当a≥2时,h

①当a≥0时,在x∈[2,+∞)上F'(x)>0,F(x)在x∈[2,+∞)递增,F(x)的最小值为F(2)=0,不可能有f(x﹣a﹣1)﹣g(x)≤0. ②当a≤﹣1时,令∴

,解得:

,此时

.∴F'(x)在[2,+∞)上递减.∵F'(x)的最大值为F'(2)=a+1≤0,∴F(x)

递减.∴F(x)的最大值为F(2)=0, 即f(x﹣a﹣1)﹣g(x)≤0成立. ③当﹣1<a<0时,此时

,当

时,F''(x)>0,F'(x)递增,当

时,F''(x)<0,F'(x)递减.

/

/

∴∴在

=﹣ln(﹣a)>0,又由于F'(2)=a+1>0,

上F'(x)>0,F(x)递增,

上F(x)>0,显然不合题意.

又∵F(2)=0,所以在综上所述:a≤﹣1.

22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为

,(t为参数,0<θ<π),曲线C的极坐标方程为ρsinθ﹣2cosθ=0.

2

(1)求曲线C的直角坐标方程;

(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值. 【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程. 【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;

(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值. 【解答】解:(1)由ρsinθ﹣2cosθ=0,得ρsinθ=2ρcosθ. ∴曲线C的直角坐标方程为y2=2x;

(2)将直线l的参数方程代入y=2x,得tsinθ﹣2tcosθ﹣1=0. 设A,B两点对应的参数分别为t1,t2, 则

2

2

2

2

2

2

==.

时,|AB|的最小值为2.

23.已知函数f(x)=|x﹣5|﹣|x﹣2|.

(1)若?x∈R,使得f(x)≤m成立,求m的范围; (2)求不等式x2﹣8x+15+f(x)≤0的解集. 【考点】R5:绝对值不等式的解法.

【分析】(1)通过讨论x的范围,求出f(x)的分段函数的形式,求出m的范围即可; (2)通过讨论x的范围,求出不等式的解集即可.

【解答】解:(1),

当2<x<5时,﹣3<7﹣2x<3,

/

联系客服:779662525#qq.com(#替换为@)