¼ÆÁ¿¾­¼ÃѧµÚËÄÕ·ÇÏßÐԻعéÄ£Ð͵ÄÏßÐÔ»¯

ºÍÏÂÏÞ¡£Limyt= k, Limyt= 0¡£a, b Ϊ´ý¹À²ÎÊý¡£ÇúÏßÓÐ¹Õµã£¬×ø±êΪ£¨

t??t???Lnbk,£©£¬Çúa2ÏßµÄÉÏÏÂÁ½²¿·Ö¶Ô³ÆÓڹյ㡣

ͼ4.13 yt = k / (1 +be?at?ut

at?ut) ͼ4.14 yt = k / (1 +be)

ΪÄÜÔËÓÃ×îС¶þ³Ë·¨¹À¼Æ²ÎÊýa, b£¬±ØÐëÊÂÏȹÀ¼Æ³öÉúÇúÏß³¤Éϼ«ÏÞÖµk¡£ÏßÐÔ»¯¹ý³ÌÈçÏ¡£µ±k¸ø³öʱ£¬×÷Èçϱ任£¬

k/yt = 1 + be?at?ut

ÒÆÏ k/yt - 1 = be?at?ut

È¡×ÔÈ»¶ÔÊý£¬Ln ( k/yt - 1) = Lnb - a t + ut (4.18) Áîyt* = Ln ( k/yt - 1), b* = Lnb, Ôò

yt* = b* - a t + ut (4.19) ´Ëʱ¿ÉÓÃ×îС¶þ³Ë·¨¹À¼Æb*ºÍa¡£

ͼ4.15 ÄÚµØ5ÔÂ1ÈÕÖÁ28ÈÕÿÌì·ÇµäÊý¾ÝÒ»ÀÀ

5

¢Ë ¹¨²®Ë¹£¨Gompertz£©ÇúÏß

Ó¢¹úͳ¼ÆÑ§¼ÒºÍÊýѧ¼Ò×î³õÌá³ö°Ñ¸ÃÇúÏß×÷Ϊ¿ØÖÆÈË¿ÚÔö³¤µÄÒ»ÖÖÊýѧģÐÍ£¬´ËÄ£ÐÍ¿ÉÓÃÀ´ÃèÊöÒ»Ïîм¼Êõ£¬Ò»ÖÖвúÆ·µÄ·¢Õ¹¹ý³Ì¡£ÇúÏßµÄÊýѧÐÎʽÊÇ£¬

?at?be yt =ke

ͼ4.15 yt =ke?be

?at

ÇúÏßµÄÉÏÏÞºÍÏÂÏÞ·Ö±ðΪkºÍ0£¬Limyt= k, Limyt= 0¡£a, b Ϊ´ý¹À²ÎÊý¡£ÇúÏßÓйյ㣬

t??t???×ø±êΪ£¨

Lnbk,£©£¬µ«ÇúÏß²»¶Ô³ÆÓڹյ㡣һ°ãÇéÐΣ¬ÉÏÏÞÖµk¿ÉÊÂÏȹÀ¼Æ£¬ÓÐÁËkÖµ£¬ae¹¨²®Ë¹ÇúÏ߲ſÉÒÔÓÃ×îС¶þ³Ë·¨¹À¼Æ²ÎÊý¡£ÏßÐÔ»¯¹ý³ÌÈçÏ£ºµ±k¸ø¶¨Ê±£¬

?atyt / k = e?be£¬

?at k/yt = ebe

Ln (k/yt) = be?at£¬ Ln[Ln(k/yt)] = Lnb - a t

Áîy*= Ln[Ln(k/yt)], b* = Lnb£¬Ôò

y* = b* - a t

ÉÏʽ¿ÉÓÃ×îС¶þ³Ë·¨¹À¼Æb* ºÍ a¡£ ¢Ì Cobb-DouglasÉú²úº¯Êý

ÏÂÃæ½éÉܿ²¼?µÀ¸ñÀ­Ë¹£¨Cobb-Douglas£©Éú²úº¯Êý¡£ÆäÐÎʽÊÇ

Q = k L? C 1- ? (4.24)

ÆäÖÐQ±íʾ²úÁ¿£»L±íʾÀͶ¯Á¦Í¶ÈëÁ¿£»C±íʾ×ʱ¾Í¶ÈëÁ¿£»kÊdz£Êý£»0 < ? < 1¡£ÕâÖÖÉú²úº¯ÊýÊÇÃÀ¹ú¾­¼Ãѧ¼Ò¿Â²¼ºÍµÀ¸ñÀ­Ë¹¸ù¾Ý1899-1922ÄêÃÀ¹ú¹ØÓÚÉú²ú·½ÃæµÄÊý¾ÝÑо¿µÃ³öµÄ¡£?µÄ¹À¼ÆÖµÊÇ0.75£¬?µÄ¹À¼ÆÖµÊÇ0.25¡£¸üϰ¹ßµÄ±í´ïÐÎʽÊÇ

??uyt =?0xt11xt22et (4.25)

ÕâÊÇÒ»¸ö·ÇÏßÐÔÄ£ÐÍ£¬ÎÞ·¨ÓÃOLS·¨Ö±½Ó¹À¼Æ£¬µ«¿ÉÏÈ×÷ÏßÐÔ»¯´¦Àí¡£ÉÏʽÁ½±ßͬȡ¶ÔÊý£¬µÃ£º

Lnyt = Ln?0 + ?1 Lnxt 1 + ?2 Lnxt 2 + ut (4.26)

6

È¡ yt* = Lnyt, ?0* = Ln ?0, xt 1* = Ln xt 1, xt 2* = Ln xt 2£¬ÓÐ

yt*= ?0* +?1 xt 1* + ?2 xt 2* + ut (4.27)

ÉÏʽΪÏßÐÔÄ£ÐÍ¡£ÓÃOLS·¨¹À¼Æºó£¬ÔÙ·µ»Øµ½Ô­Ä£ÐÍ¡£Èô»Ø¹é²ÎÊý ?1 + ?2 = 1£¬³ÆÄ£ÐÍΪ¹æÄ£±¨³ê²»±äÐÍ£¨Ð¹ŵäÔö³¤ÀíÂÛ£©£» ?1 + ?2 > 1£¬³ÆÄ£ÐÍΪ¹æÄ£±¨³êµÝÔöÐÍ£» ?1 + ?2 < 1£¬³ÆÄ£ÐÍΪ¹æÄ£±¨³êµÝ¼õÐÍ¡£

¶ÔÓÚ¶ÔÊýÏßÐÔÄ£ÐÍ£¬Lny = Ln?0 + ?1 Lnxt1 + ?2 Lnxt2 + ut £¬?1ºÍ?2³Æ×÷µ¯ÐÔϵÊý¡£ÒÔ?1ΪÀý£¬

?1 =

?Lnyt?Lnxt1=

yt?1?ytxt1?1?xt1=

?yt/yt?xt1/xt1=

xt1?ytyt?xt1 (4.28)

¿É¼ûµ¯ÐÔϵÊýÊÇÁ½¸ö±äÁ¿µÄ±ä»¯Âʵıȡ£×¢Ò⣬µ¯ÐÔϵÊýÊÇÒ»¸öÎÞÁ¿¸Ù²ÎÊý£¬ËùÒÔ±ãÓÚÔÚ²»Í¬±äÁ¿Ö®¼ä±È½ÏÏàÓ¦µ¯ÐÔϵÊýµÄ´óС¡£

¶ÔÓÚÏßÐÔÄ£ÐÍ£¬yt = ?0 + ?1 xt1 + ?2 xt2 + ut £¬?1ºÍ ?2³Æ×÷±ß¼ÊϵÊý¡£ÒÔ?1ΪÀý£¬

?1 =

?yt?xt1 (4.29)

ͨ¹ý±È½Ï(4.28)ºÍ(4.29)ʽ£¬¿ÉÖªÏßÐÔÄ£ÐÍÖеĻعéϵÊý£¨±ß¼ÊϵÊý£©ÊǶÔÊýÏßÐԻعéÄ£ÐÍÖе¯ÐÔϵÊýµÄÒ»¸ö·ÖÁ¿¡£ Àý4.1 £¨136PÀý3.4£©ÂÔ

4.2·ÇÏßÐÔ»¯Ä£Ð͵Ĵ¦Àí·½·¨

b2Ä£ÐÍ£ºy?a0?a1x1b1?a2x2ÎÞÂÛͨ¹ýʲô±ä»»¶¼²»¿ÉÄÜʵÏÖÏßÐÔ»¯£¬¶ÔÓÚÕâÖÖÄ£ÐÍ

³ÆÎª·ÇÏßÐÔ»¯Ä£ÐÍ¡£¿É²ÉÓøß˹¡ªÅ£¶Ùµü´ú·¨½øÐйÀ¼Æ£¬¼´½«ÆäÕ¹¿ªÌ©ÀÕ¼¶Êýºó£¬ÔÙ½øÐеü´ú¹À¼Æ·½·¨½øÐйÀ¼Æ¡£

1¡¢µü´ú¹À¼Æ·¨

˼ÏëÊÇ£ºÍ¨¹ýÌ©ÀÕ¼¶ÊýÕ¹¿ª£¬ÏÈʹ·ÇÏßÐÔ·½³ÌÔÚij×é³õʼ²ÎÊý¹À¼ÆÖµ¸½½üÏßÐÔ»¯£¬È»ºó¶ÔÕâÒ»ÏßÐÔ·½³ÌÓ¦ÓÃOLS·¨£¬µÃ³öÒ»×éеIJÎÊý¹À¼ÆÖµ¡£ÏÂÒ»²½ÊÇʹ·ÇÏßÐÔ·½³ÌÔÚвÎÊý¹À¼ÆÖµ¸½½üÏßÐÔ»¯£¬¶ÔеÄÏßÐÔ·½³ÌÔÙÓ¦ÓÃOLS·¨£¬ÓֵóöÒ»×éеIJÎÊý¹À¼ÆÖµ¡£²»¶ÏÖØ¸´ÉÏÊö¹ý³Ì£¬Ö±ÖÁ²ÎÊý¹À¼ÆÖµÊÕÁ²Ê±ÎªÖ¹¡£Æä²½ÖèÈçÏ¡£

1£©¶ÔÄ£ÐÍ£ºy?f(x1,x2,

,xk,b1,b2,,bp)?uÔÚ¸ø¶¨µÄ²ÎÊý³õʼֵb10,b20¡­bp0Õ¹

7

¿ªÌ©ÀÕ¼¶Êý£º

y?f(x1,x2,pp,xk,b10,b20,??f?,bpo)????(bi?bio)?bi?1?i?biop??2f1????2i?1j?1???bi?bjy?f(x1,x2,p?(bi?bio)(bj?bj0)?u???biobj0??f?,bpo)??bio???bi?1?i?biop2ȡǰÁ½Ï±ãÓÐÏßÐÔ½üËÆ£º

,xk,b10,b20,pp??f??f?1??bi????????b?b?b2i?1i?1j?1?i?bio?ij?(bi?bio)(bj?bj0)?u???biobj0

??f?

2£©½«ÉÏʽ×ó¶Ë¿´³É×éеÄÒò±äÁ¿£¬½«ÓÒ¶Ë??¿´³ÉÒ»×éеÄ×Ô±äÁ¿£¬Õâ¾ÍÒÑ

??bi?bio

?,b?¾­³ÉΪ±ê×¼ÏßÐÔÄ£ÐÍ£¬ÔÙ¶ÔÆä¾ÍÓÃOLS·¨£¬µÃ³öÒ»×é¹À¼ÆÖµb1121,?,b?3£©Öظ´µÚÒ»¡¢¶þ²½£¬ÔÚ²ÎÊý¹À¼ÆÖµb1121,?¡£ ,bp1?¸½½üÔÙ×öÒ»´ÎÌ©ÀÕ¼¶ÊýÕ¹¿ª£¬µÃ,bp1?¡£ ,bp2?,b?,µ½ÐµÄÏßÐÔÄ£ÐÍ£¬Ó¦ÓÃOLS·¨£¬ÓֵóöÒ»×é²ÎÊý¹À¼ÆÖµ£ºb1222?,b?,4£©Èç´Ë·´¸´£¬µÃ³öÒ»×éµãÐòÁÐb1j2j2¡¢µü´ú¹À¼Æ·¨µÄEViewsʵÏÖ¹ý³Ì 1£©É趨´ú¹À²ÎÊýµÄ³õʼֵ£¬·½·¨ÓÐÁ½ÖÖ£º A¡¢Ê¹ÓÃParamÃüÁîÉ趨£¬

?(j?1,2,)Ö±µ½ÆäÊÕÁ²ÎªÖ¹¡£ ,bpjÀýÈ磬Param 1 0.5 2 0 3 0 Ôò½«´ý¹ÀµÄÈý¸ö²ÎÊýµÄ³õʼֵÉè³ÉÁË0.5£¬0£¬0. B¡¢ÔÚ¹¤×÷Îļþ´°¿ÚÖÐË«»÷ÐòÁÐC£¬²¢ÔÚÐòÁд°¿ÚÖ±½ÓÊäÈë²ÎÊýµÄ³õʼֵ¡£ 2£©¹À¼Æ²ÎÊý A¡¢ÃüÁʽ

ÔÚÃüÁî´°¿Ú¿ÉÒÔÖ±½Ó¼üÈë·ÇÏßÐÔÄ£Ð͵ĵü´ú¹À¼ÆÃüÁîNLS¡£¸ñʽΪ£º NLS ±»½âÊͱäÁ¿£¬=·ÇÏßÐÔº¯Êý±í´ïʽ ÀýÈ磬¶ÔÓÚ·ÇÏßÐԻعéÄ£ÐÍy?aNLS y=c(1)*(x-c(2))/(x-c(3)) B¡¢²Ëµ¥·½Ê½¡£

ÔÚÊý×é´°¿Ú¡°procs¡úmake epuation£»

8

x?b?u¹À¼ÆÃüÁîΪ x?c

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)