³ö|AB|,ÁªÁ¢Ö±ÏßOCÓëÍÖÔ²·½³ÌÇó|OC|,½ø¶ø½¨Á¢sinÖÊÇó½â.
ÒÉÄÑÍ»ÆÆ °Ñ½ÇµÄÎÊÌâת»¯ÎªÈý½Çº¯ÊýÎÊÌâ,¼´ÓÉsin
Óëk1Ö®¼äµÄº¯Êý¹ØÏµ,ÀûÓöþ´Îº¯ÊýµÄÐÔ
=
=f(k1)Çó½âÊǽâÌâµÄÍ»ÆÆ¿Ú.
½âÌⷴ˼ ×îÖµÎÊÌâÒ»°ãÀûÓú¯ÊýµÄ˼Ïë·½·¨Çó½â,ÀûÓþàÀ빫ʽ½¨Á¢sinÓëk1Ö®¼äµÄº¯Êý¹ØÏµ
ÊǽâÌâ¹Ø¼ü.ÀιÌÕÆÎÕ»ù´¡ÖªÊ¶ºÍ·½·¨ÊÇÇó½âµÄǰÌá.±¾ÌâµÄÍêÃÀ½â´ðÌåÏÖÁËÊýѧ֪ʶ¡¢ÄÜÁ¦¡¢Ë¼Ïë¡¢·½·¨µÄÍêÃÀ½áºÏ.
¿¼µãÈý ´æÔÚÐÔÎÊÌâ
(2015ËÄ´¨,20,13·Ö)Èçͼ,ÍÖÔ²E: + =1(a>b>0)µÄÀëÐÄÂÊÊÇ ,¹ýµãP(0,1)µÄ¶¯Ö±ÏßlÓëÍÖÔ²ÏཻÓÚA,BÁ½µã.µ±Ö±ÏßlƽÐÐÓÚxÖáʱ,Ö±Ïßl±»ÍÖÔ²E½ØµÃµÄÏ߶γ¤Îª2 . (1)ÇóÍÖÔ²EµÄ·½³Ì;
(2)ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,ÊÇ·ñ´æÔÚÓëµãP²»Í¬µÄ¶¨µãQ,ʹµÃ = ºã³ÉÁ¢?Èô´æÔÚ,Çó³öµãQµÄ×ø±ê;Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ.
½âÎö (1)ÓÉÒÑÖªµÃ,µã( ,1)ÔÚÍÖÔ²EÉÏ.
Òò´Ë, - ½âµÃa=2,b= .
ËùÒÔÍÖÔ²EµÄ·½³ÌΪ + =1.
(2)µ±Ö±ÏßlÓëxÖáÆ½ÐÐʱ,ÉèÖ±ÏßlÓëÍÖÔ²ÏཻÓÚC,DÁ½µã. Èç¹û´æÔÚ¶¨µãQÂú×ãÌõ¼þ, ÔòÓÐ
==1,
¼´|QC|=|QD|.
ËùÒÔQµãÔÚyÖáÉÏ,¿ÉÉèQµãµÄ×ø±êΪ(0,y0). µ±Ö±ÏßlÓëxÖᴹֱʱ, ÉèÖ±ÏßlÓëÍÖÔ²ÏཻÓÚM,NÁ½µã, ÔòM,NµÄ×ø±ê·Ö±ðΪ(0, ),(0,- ). ÓÉ = ,ÓÐ
- = - ,
½âµÃy0=1»òy0=2.
ËùÒÔ,Èô´æÔÚ²»Í¬ÓÚµãPµÄ¶¨µãQÂú×ãÌõ¼þ, ÔòQµã×ø±êÖ»¿ÉÄÜΪ(0,2).
ÏÂÃæÖ¤Ã÷:µ±QµÄ×ø±êΪ(0,2)ʱ,¶ÔÈÎÒâÖ±Ïßl,¾ùÓÐ = . µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ,ÓÉÉÏ¿ÉÖª,½áÂÛ³ÉÁ¢.
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ,¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+1,A,BµÄ×ø±ê·Ö±ðΪ(x1,y1),(x2,y2). 22 ÁªÁ¢ µÃ(2k+1)x+4kx-2=0. ÆäÅбðʽ¦¤=(4k)+8(2k+1)>0, ËùÒÔ,x1+x2=-Òò´Ë+=
2
2
,x1x2=-
.
=2k.
Ò×Öª,µãB¹ØÓÚyÖá¶Ô³ÆµÄµãB'µÄ×ø±êΪ(-x2,y2).
ÓÖkQA= =
- -
=k- ,
kQB'=- =
- -
=-k+=k-, -
ËùÒÔkQA=kQB',¼´Q,A,B'Èýµã¹²Ïß. ËùÒÔ = = = .
¹Ê´æÔÚÓëP²»Í¬µÄ¶¨µãQ(0,2), ʹµÃ
=ºã³ÉÁ¢.
C×é ½ÌʦרÓÃÌâ×é
¿¼µãÒ» ¶¨ÖµÓ붨µãÎÊÌâ
(2016±±¾©,19,14·Ö)ÒÑÖªÍÖÔ²C: + =1¹ýA(2,0),B(0,1)Á½µã. (1)ÇóÍÖÔ²CµÄ·½³Ì¼°ÀëÐÄÂÊ;
(2)ÉèPΪµÚÈýÏóÏÞÄÚÒ»µãÇÒÔÚÍÖÔ²CÉÏ,Ö±ÏßPAÓëyÖá½»ÓÚµãM,Ö±ÏßPBÓëxÖá½»ÓÚµãN.ÇóÖ¤:ËıßÐÎABNMµÄÃæ»ýΪ¶¨Öµ.
½âÎö (1)ÓÉÌâÒâµÃ
½âµÃa=2,b=1.
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ +y=1. (2)Ö¤Ã÷:ÓÉ(1)Öª,A(2,0),B(0,1).
ÉèP(x0,y0),Ôò +4 =4.
2
µ±x0¡Ù0ʱ,Ö±ÏßPAµÄ·½³ÌΪy= (x-2). -
Áîx=0,µÃyM=-
-
,´Ó¶ø|BM|=|1-yM|=
-
-
.
Ö±ÏßPBµÄ·½³ÌΪy= x+1.
Áîy=0,µÃxN=-
-
,´Ó¶ø|AN|=|2-xN|=
-
.
ËùÒÔ|AN|¡¤|BM|= ¡¤ - -
- -
= =
- -
- - - -
=4.
µ±x0=0ʱ,y0=-1,|BM|=2,|AN|=2, ËùÒÔ|AN|¡¤|BM|=4. ×ÛÉÏ,|AN|¡¤|BM|Ϊ¶¨Öµ.
½â·¨¶þ:(¢ò)µãPÔÚÇúÏß + =1ÉÏ,²»·ÁÉèP(2cos ¦È,sin ¦È),µ±¦È¡Ùk¦ÐÇҦȡÙk¦Ð+ (k¡ÊZ)ʱ,Ö±ÏßAPµÄ·½³ÌΪy-0= - (x-2),Áîx=0,µÃyM= - ; Ö±ÏßBPµÄ·½³ÌΪy-1=¡à|AN|¡¤|BM|=2 - - -
-
-
(x-0),Áîy=0,µÃxN=
-
.
¡¤ -
-
=2 - - =2¡Á2=4(¶¨Öµ).
µ±¦È=k¦Ð»ò¦È=k¦Ð+(k¡ÊZ)ʱ,M¡¢NÊǶ¨µã,Ò×µÃ|AN|¡¤|BM|=4.×ÛÉÏ,|AN|¡¤|BM|=4.
¿¼µã¶þ ×îÖµÓ뷶ΧÎÊÌâ
1.(2014ËÄ´¨,10,5·Ö)ÒÑÖªFΪÅ×ÎïÏßy=xµÄ½¹µã,µãA,BÔÚ¸ÃÅ×ÎïÏßÉÏÇÒλÓÚxÖáµÄÁ½
2
¡¤ =2(ÆäÖÐOÎª×ø±êÔµã),Ôò¡÷ABOÓë¡÷AFOÃæ»ýÖ®ºÍµÄ×îСֵÊÇ( ) ²à, A.2 B.3 C.´ð°¸ B
2.(2014ºþ±±,9,5·Ö)ÒÑÖªF1,F2ÊÇÍÖÔ²ºÍË«ÇúÏߵĹ«¹²½¹µã,PÊÇËüÃǵÄÒ»¸ö¹«¹²µã,ÇÒ¡ÏF1PF2= ,ÔòÍÖÔ²ºÍË«ÇúÏßµÄÀëÐÄÂʵĵ¹ÊýÖ®ºÍµÄ×î´óֵΪ( ) A.
D.
B.
C.3 D.2
´ð°¸ A
3.(2018Õã½,21,15·Ö)Èçͼ,ÒÑÖªµãPÊÇyÖá×ó²à(²»º¬yÖá)Ò»µã,Å×ÎïÏßC:y=4xÉÏ´æÔÚ²»Í¬µÄÁ½µãA,BÂú×ãPA,PBµÄÖеã¾ùÔÚCÉÏ. (1)ÉèABÖеãΪM,Ö¤Ã÷:PM´¹Ö±ÓÚyÖá;
(2)ÈôPÊǰëÍÖÔ²x+ =1(x<0)Éϵ͝µã,Çó¡÷PABÃæ»ýµÄȡֵ·¶Î§.
2
2
½âÎö ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²¡¢Å×ÎïÏߵļ¸ºÎÐÔÖÊ,Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶,ͬʱ¿¼²éÔËËãÇó½âÄÜÁ¦ºÍ×ÛºÏÓ¦ÓÃÄÜÁ¦.
(1)ÉèP(x0,y0),A ,B .
ÒòΪPA,PBµÄÖеãÔÚÅ×ÎïÏßÉÏ, ËùÒÔy1,y2Ϊ·½³Ì ËùÒÔy1+y2=2y0, Òò´Ë,PM´¹Ö±ÓÚyÖá.
(2)ÓÉ(1)¿ÉÖª -
ËùÒÔ|PM|= ( + )-x0= -3x0, |y1-y2|=2 - .
=4¡¤
¼´y-2y0y+8x0- =0µÄÁ½¸ö²»Í¬µÄʵ¸ù.
2
Òò´Ë,¡÷PABµÄÃæ»ýS¡÷PAB=|PM|¡¤|y1-y2|=
( -4x0 .
ÒòΪ +=1(x0<0),ËùÒÔ -4x0=-4 -4x0+4¡Ê[4,5].
Òò´Ë,¡÷PABÃæ»ýµÄȡֵ·¶Î§ÊÇ
.
ÒÉÄÑÍ»ÆÆ ½âÎö¼¸ºÎÖС°È¡Öµ·¶Î§¡±Óë¡°×îÖµ¡±ÎÊÌâ
ÔÚ½âÎö¼¸ºÎÖÐ,Çóij¸öÁ¿(Ö±ÏßбÂÊ,Ö±ÏßÔÚx¡¢yÖáÉϵĽؾà,ÏÒ³¤,Èý½ÇÐλòËıßÐÎÃæ»ýµÈ)µÄȡֵ·¶Î§»ò×îÖµÎÊÌâµÄ¹Ø¼üÊÇÀûÓÃÌõ¼þ°ÑËùÇóÁ¿±íʾ³É¹ØÓÚij¸ö±äÁ¿(ͨ³£ÊÇÖ±ÏßбÂÊ,¶¯µãµÄºá¡¢×Ý×ø