四川省成都市高新区2017-2018学年八年级(下)期末数学试卷

如果多购买60枝,那么可以按批发价付款,同样需要120元,列方程组得:

把m=1.2n代入方程组得:

解得:n=,x=300,

答:这个学校八年级学生有300人.

【点评】此题考查了一元一次不等式组和方程组的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出不等式组和方程组.

20.【分析】(1)如图,作EM⊥AD于M,EN⊥AB于N.只要证明△EMD≌△ENF即可解决问题;

(2)只要证明△ADG≌△CDE,可得AG=EC即可解决问题; (3)如图,作EH⊥DF于H.想办法求出EH,HM即可解决问题; 【解答】解:(1)如图,作EM⊥AD于M,EN⊥AB于N.

∵四边形ABCD是正方形, ∴∠EAD=∠EAB,

∵EM⊥AD于M,EN⊥AB于N, ∴EM=EN,

∵∠EMA=∠ENA=∠DAB=90°, ∴四边形ANEM是矩形, ∴∠MEN=∠DEF=90°, ∴∠DEM=∠FEN, ∵∠EMD=∠ENF=90°, ∴△EMD≌△ENF, ∴ED=EF,

∵四边形DEFG是矩形, ∴四边形DEFG是正方形.

(2)∵四边形DEFG是正方形,四边形ABCD是正方形, ∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°, ∴∠ADG=∠CDE, ∴△ADG≌△CDE, ∴AG=CE,

∴AE+AG=AE+EC=AC=

(3)如图,作EH⊥DF于H.

AD=4

∵四边形ABCD是正方形, ∴AB=AD=4,AB∥CD, ∵F是AB中点, ∴AF=FB2 ∴DF=

=2

∵△DEF是等腰直角三角形,EH⊥AD, ∴DH=HF, ∴EH=DF=∵AF∥CD,

∴AF:CD=FM:MD=1:2, ∴FM=

, ,

∴HM=HF﹣FM=

在Rt△EHM中,EM==.

【点评】本题考查正方形的性质、全等三角形的判定和性质、矩形的性质和判定、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 四、填空题(共5小题,每小题4分,满分20分)

21.【分析】利用完全平方公式的结构特征判断即可得到结果. 【解答】解:∵100x2﹣kxy+49y2是一个完全平方式, ∴k=±140. 故答案为:±140.

【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.

22.【分析】先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解. 【解答】解:

由①得,x<,

由②得,x>2b+3,

所以,不等式组的解集是2b+3<x<∵不等式组的解集是﹣1<x<1, ∴2b+3=﹣1,

=1,

解得a=1,b=﹣2,

所以,(a+1)(b+1)=(1+1)(﹣2+1)=﹣2. 故答案为:﹣2.

【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 23.【分析】此题中最大的降价率即是保证售价和成本价相等.可以把成本价看作单位1. 【解答】解:设成本价是1,则 (1+p%)(1﹣d%)=1. 1﹣d%=d%=1﹣

d%=∴d=

, .

【点评】解决问题的关键是读懂题意,找到所求的量的等量关系. 这里注意:保证不亏本,即让售价和成本价持平.

24.【分析】过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点

>>闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟偡濠婂啰绠绘鐐村灴婵偓闁靛牆鎳愰濠傗攽鎺抽崐鎰板磻閹惧墎妫柟顖嗗瞼鍚嬮梺鍝勭焿缂嶄線鐛崶顒夋晬闁挎繂妫岄幐鍛節閻㈤潧浠滄俊顖氾攻缁傚秴饪伴崼婵堫槰闂侀€炲苯澧い顏勫暣婵″爼宕卞Δ鈧〖缂傚倸鍊哥粔鏉懳涘Δ鈧悳濠氬锤濡や礁浜滈梺绋跨箰閻ㄧ兘骞忛搹鍦<缂備降鍨归獮鏍煙閸愯尙绠洪柕鍥ㄥ姌椤﹀绱掓潏銊ユ诞闁诡喒鏅犲畷姗€鎳犻鎸庡亝缂傚倸鍊风欢锟犲窗閺嶎厽鍋嬮柟鎯х-閺嗭箓鏌熼悜姗嗘畷闁稿﹦鍏橀幃妤呮偨閻ц婀遍弫顕€骞嗚閺€浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欑喊鍗炴闂佺懓绠嶉崹纭呯亽婵炴挻鍑归崹鎶藉焵椤掑啫鐓愰柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺闁告繂瀚悞璺ㄧ磼閺屻儳鐣烘鐐叉瀵噣宕奸锝嗘珫婵犵數鍋為崹鍫曟晝閳哄倸顕遍柨鐕傛嫹<<
12@gma联系客服:779662525#qq.com(#替换为@)