= 28
1
1111(?)?P3 3.5.60 (1)1/Px =Qx =1 (2)1/PY =QY =4P1P24L2111?9L43P1P3
(3)1/PZ =QZ =3.5.61
PA?62C2?3
3.5.62
1????????2?????f12??2ff?f2?12???PF?P??P??P??22
?????1??2???P??=P1P2式中:
?2?nPn
??????1?1??2?2???P2P??=P1
?????1??2??? ?P?=P1P222?n?nPn
??n2Pn
?69??914?? 3.5..63 QYY =??69??96??139??913??139??96?????? 3.5.64 Qyy= Qyz = Qzx =??2124??3135??7383??3135??2124??8394?????? Qyw= QZW = QWW=??2?.??.QLL=?66?.?.??.3.5.65
.?2-1...??-12...??..2-1.?..-12.??....2? ....?2-1......??-12......????..2-1....???..-12....?QLL=?66?....2-1..???....-12..???......2-1???......-12???? 3.5.66 3.5.67 (1) (2)
-1QXX=(BTB)
-1TQ??=B(BTB)BLL
QVX=0 V与X互不相关
QVVL?=0?互不相关 V与L???3.6.71 (1)S=6 000.027(m) (2)0=1.11(mm)
(3) (5)
?全???=2.72(mm) (4)平=1.92(mm) ?L?2=1.57(mm)
3.6.72 (1) (2) (3) (4)(5)
?0?=1.27(mm)
???1???=1.33(mm) 2=2.06(mm) 3=0.90(mm) ?L?1=0.94(mm)
?L?2
=1.46(mm)
?L?3
=0.64(mm)
?全?=2.62(mm)
?L?全=1.85(mm)
3.7.75 σ全 =0.004 2(m)
3.7.76 DZZ =KDLLKT + KεεTKT DZY = KDLLKT + KεεTFT 3.8.77 令P点坐标X、Y的协方差阵为
2?x?xy?????2??????yz? y? ??LD???31LL本题分两步解算:第一步先求平差角向量L的协方差阵,令=
??L?1?L2?2-1-1?1??2DLL-12-1(秒)??=??T3??L?3??-1-12??,可求得
第二步求平差后P点坐标X、Y的协方差阵,其中有:
?YAP??12???XcotL?]D??XcotL???x??2[?YAP?XAPcotL2AP3LL?AP2?????XcotL??AP3? ?
???XAP?12???XcotL?]D??YcotL???y??2[?YAP?XAPcotL2AP3LL?AP2?????YcotL??AP3??
???XAP?12???YcotL?]D??YcotL???y??2[??XAP?YAPcotL2AP3LL?AP2?????YcotL??AP3? ? </