(共17套194页)最新全国各地2018中考数学真题分类汇总(分类专项练习汇总)

11.四位同学在研究函数 最小值;乙发现 当

时,

是方程

(b,c是常数)时,甲发现当 时,函数有

的一个根;丙发现函数的最小值为3;丁发现

.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )

A. 甲

B. 乙

C. 丙 D. 丁 【答案】B

12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为( )

A. (

B.

C.

D. ( 【答案】B 二、填空题 13.已知二次函数 【答案】增大

,当x>0时,y随x的增大而________(填“增大”或“减小”)

14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【答案】4 三、解答题

15.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1 , P2 , P3的坐标,机器人能根据图2,绘制图形。若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式。请根据以下点的坐标,求出线段的长度或抛物线的函数关系式。

-4

①P1(4,0),P2(0,0),P3(6,6)。 ②P1(0,0),P2(4,0),P3(6,6)。 【答案】①∵P1(4,0),P2(0,0),4-0=4>0, ∴绘制线段P1P2 , P1P2=4.

②∵P1(0,0),P2(4,0),P3(6,6),0-0=0, ∴绘制抛物线,

设y=ax(x-4),把点(6,6)坐标代入得a= , ∴

,即

(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点

16.如图,抛物线

A在点B的左边),点C , D在抛物线上.设A(t , 0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G , H , 且直线GH平分矩形的面积时,求抛物线平移的距离. 【答案】(1)设抛物线的函数表达式为y=ax(x-10) ∵当t=2时,AD=4

∴点D的坐标是(2,4) ∴4=a×2×(2-10),解得a=

∴抛物线的函数表达式为

(2)由抛物线的对称性得BE=OA=t ∴AB=10-2t 当x=t时,AD=

ABCD

=2

(AB+AD

<0

∴当t=1时,矩形ABCD的周长有最大值,最大值是多少

(3)如图,

当t=2时,点A,B,C,D的坐标分别为(2,0),(8,0),(8,4),(2,4) ∴矩形ABCD对角线的交点P的坐标为(5,2)

当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分。 当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分。∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分。 当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积。 ∵AB∥CD

∴线段OD平移后得到线段GH

∴线段OD的中点Q平移后的对应点是P 在△OBD中,PQ是中位线

=

联系客服:779662525#qq.com(#替换为@)